------------------------------------------------------------------------
-- The Agda standard library
--
-- Some examples showing how the Function.Reasoning module
-- can be used to perform "functional reasoning" similar to what is being
-- described in: https://stackoverflow.com/q/22676703/3168666
------------------------------------------------------------------------

{-# OPTIONS --with-K #-}

module README.Function.Reasoning where

-- Function.Reasoning exports a flipped application (_|>_) combinator
-- as well as a type annotation (_∶_) combinator.

open import Function.Reasoning

------------------------------------------------------------------------
-- A simple example

module _ {A B C : Set} {A→B : A  B} {B→C : B  C} where

-- Using the combinators we can, starting from a value, chain various
-- functions whilst tracking the types of the intermediate results.

  A→C : A  C
  A→C a =
       a     A
    |> A→B   B
    |> B→C   C

------------------------------------------------------------------------
-- A more concrete example

open import Data.Nat
open import Data.List.Base
open import Data.Char.Base
open import Data.String.Base as String using (String; toList; fromList)
open import Data.String.Properties as String using (_==_)
open import Function.Base using (_∘_)
open import Data.Bool hiding (_≤?_)
open import Data.Product.Base as P using (_×_; <_,_>; uncurry; proj₁)
open import Agda.Builtin.Equality

-- This can give us for instance this decomposition of a function
-- collecting all of the substrings of the input which happen to be
-- palindromes:

subpalindromes : String  List String
subpalindromes str = let Chars = List Char in
     str                                    String
  -- first generate the substrings
  |> toList                                 Chars
  |> inits                                  List Chars
  |> concatMap tails                        List Chars
  -- then only keeps the ones which are not singletons
  |> filter  cs  2 ≤? length cs)         List Chars
  -- only keep the ones that are palindromes
  |> map < fromList , fromList  reverse >  List (String × String)
  |> filter (uncurry String._≟_)            List (String × String)
  |> map proj₁                              List String

-- Test cases

_ : subpalindromes "doctoresreverse"  "eve"  "rever"  "srevers"  "esreverse"  []
_ = refl

_ : subpalindromes "elle-meme"  "ll"  "elle"  "mem"  "eme"  []
_ = refl