------------------------------------------------------------------------
-- The Agda standard library
--
-- An All predicate for the partiality monad
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe --guardedness #-}

module Effect.Monad.Partiality.All where

open import Effect.Monad
open import Effect.Monad.Partiality as Partiality using (_⊥; ⇒≈)
open import Codata.Musical.Notation
open import Function.Base using (flip; _∘_)
open import Level
open import Relation.Binary.Definitions using (_Respects_)
open import Relation.Binary.Structures using (IsEquivalence)
open import Relation.Binary.PropositionalEquality.Core as P using (_≡_)

open Partiality._⊥
open Partiality.Equality using (Rel)
open Partiality.Equality.Rel
private
  open module E {a} {A : Set a} = Partiality.Equality (_≡_ {A = A})
    using (_≅_; _≳_)
  open module M {f} = RawMonad (Partiality.monad {f = f})
    using (_>>=_)

private
  variable
    a b p  : Level
    A : Set a
    B : Set b

------------------------------------------------------------------------
-- All, along with some lemmas

-- All P x means that if x terminates with the value v, then P v
-- holds.

data All {A : Set a} (P : A  Set p) : A   Set (a  p) where
  now   :  {v} (p : P v)              All P (now v)
  later :  {x} (p :  (All P ( x)))  All P (later x)

-- Bind preserves All in the following way:

infixl 1 _>>=-cong_

_>>=-cong_ :  {p q} {P : A  Set p} {Q : B  Set q}
               {x : A } {f : A  B } 
             All P x  (∀ {x}  P x  All Q (f x)) 
             All Q (x >>= f)
now p   >>=-cong f = f p
later p >>=-cong f = later ( ( p >>=-cong f))

-- All respects all the relations, given that the predicate respects
-- the underlying relation.

respects :
   {k} {P : A  Set p} {_∼_ : A  A  Set } 
  P Respects _∼_  All P Respects Rel _∼_ k
respects resp (now    x∼y) (now   p) = now (resp x∼y p)
respects resp (later  x∼y) (later p) = later ( respects resp ( x∼y) ( p))
respects resp (laterˡ x∼y) (later p) =          respects resp    x∼y  ( p)
respects resp (laterʳ x≈y) p         = later ( respects resp    x≈y     p)

respects-flip :
   {k} {P : A  Set p} {_∼_ : A  A  Set } 
  P Respects flip _∼_  All P Respects flip (Rel _∼_ k)
respects-flip resp (now    x∼y) (now   p) = now (resp x∼y p)
respects-flip resp (later  x∼y) (later p) = later ( respects-flip resp ( x∼y) ( p))
respects-flip resp (laterˡ x∼y) p         = later ( respects-flip resp    x∼y     p)
respects-flip resp (laterʳ x≈y) (later p) =          respects-flip resp    x≈y  ( p)

-- "Equational" reasoning.

module Reasoning {P : A  Set p}
                 {_∼_ : A  A  Set }
                 (resp : P Respects flip _∼_) where

  infix  3 finally
  infixr 2 _≡⟨_⟩_ _∼⟨_⟩_

  _≡⟨_⟩_ :  x {y}  x  y  All P y  All P x
  _ ≡⟨ P.refl  p = p

  _∼⟨_⟩_ :  {k} x {y}  Rel _∼_ k x y  All P y  All P x
  _ ∼⟨ x∼y  p = respects-flip resp (⇒≈ x∼y) p

  -- A cosmetic combinator.

  finally : (x : A )  All P x  All P x
  finally _ p = p

  syntax finally x p = x  p 

-- "Equational" reasoning with _∼_ instantiated to propositional
-- equality.

module Reasoning-≡ {a p} {A : Set a} {P : A  Set p}
  = Reasoning {P = P} {_∼_ = _≡_} (P.subst P  P.sym)

------------------------------------------------------------------------
-- An alternative, but equivalent, formulation of All

module Alternative {a p : Level} where

  infix  3 _⟨_⟩P
  infixr 2 _≅⟨_⟩P_ _≳⟨_⟩P_

  -- All "programs".

  data AllP {A : Set a} (P : A  Set p) : A   Set (suc (a  p)) where
    now         :  {x} (p : P x)  AllP P (now x)
    later       :  {x} (p :  (AllP P ( x)))  AllP P (later x)
    _>>=-congP_ :  {B : Set a} {Q : B  Set p} {x f}
                  (p-x : AllP Q x) (p-f :  {v}  Q v  AllP P (f v)) 
                  AllP P (x >>= f)
    _≅⟨_⟩P_     :  x {y} (x≅y : x  y) (p : AllP P y)  AllP P x
    _≳⟨_⟩P_     :  x {y} (x≳y : x  y) (p : AllP P y)  AllP P x
    _⟨_⟩P       :  x (p : AllP P x)  AllP P x

  infixl 1 _>>=-congP_

  private

    -- WHNFs.

    data AllW {A} (P : A  Set p) : A   Set (suc (a  p)) where
      now   :  {x} (p : P x)  AllW P (now x)
      later :  {x} (p : AllP P ( x))  AllW P (later x)

    -- A function which turns WHNFs into programs.

    program :  {P : A  Set p} {x}  AllW P x  AllP P x
    program (now   p) = now      p
    program (later p) = later ( p)

    -- Functions which turn programs into WHNFs.

    trans-≅ : {P : A  Set p} {x y : A } 
              x  y  AllW P y  AllW P x
    trans-≅ (now P.refl) (now   p) = now p
    trans-≅ (later  x≅y) (later p) = later (_ ≅⟨  x≅y ⟩P p)

    trans-≳ : {P : A  Set p} {x y : A } 
              x  y  AllW P y  AllW P x
    trans-≳ (now P.refl) (now   p) = now p
    trans-≳ (later  x≳y) (later p) = later (_ ≳⟨  x≳y ⟩P p)
    trans-≳ (laterˡ x≳y)        p  = later (_ ≳⟨   x≳y ⟩P program p)

    mutual

      _>>=-congW_ :  {P : A  Set p} {Q : B  Set p} {x f} 
                    AllW P x  (∀ {v}  P v  AllP Q (f v)) 
                    AllW Q (x >>= f)
      now   p >>=-congW p-f = whnf (p-f p)
      later p >>=-congW p-f = later (p >>=-congP p-f)

      whnf :  {P : A  Set p} {x}  AllP P x  AllW P x
      whnf (now   p)           = now p
      whnf (later p)           = later ( p)
      whnf (p-x >>=-congP p-f) = whnf p-x >>=-congW p-f
      whnf (_ ≅⟨ x≅y ⟩P p)     = trans-≅ x≅y (whnf p)
      whnf (_ ≳⟨ x≳y ⟩P p)     = trans-≳ x≳y (whnf p)
      whnf (_  p ⟩P)          = whnf p

  -- AllP P is sound and complete with respect to All P.

  sound :  {P : A  Set p} {x}  AllP P x  All P x
  sound = λ p  soundW (whnf p)
    where
    soundW :  {A} {P : A  Set p} {x}  AllW P x  All P x
    soundW (now   p) = now p
    soundW (later p) = later ( sound p)

  complete :  {P : A  Set p} {x}  All P x  AllP P x
  complete (now   p) = now p
  complete (later p) = later ( complete ( p))