------------------------------------------------------------------------
-- The Agda standard library
--
-- Vectors where every pair of elements are related (symmetrically)
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Relation.Binary.Core using (Rel; _⇒_)

module Data.Vec.Relation.Unary.AllPairs
       {a } {A : Set a} {R : Rel A } where

open import Data.Nat.Base using (suc)
open import Data.Vec.Base as Vec using (Vec; []; _∷_)
open import Data.Vec.Relation.Unary.All as All using (All; []; _∷_)
open import Data.Product.Base as Prod using (_,_; _×_; uncurry; <_,_>)
open import Function.Base using (id; _∘_)
open import Level using (_⊔_)
open import Relation.Binary.Definitions as B
open import Relation.Binary.Construct.Intersection renaming (_∩_ to _∩ᵇ_)
open import Relation.Binary.PropositionalEquality
open import Relation.Unary as U renaming (_∩_ to _∩ᵘ_) hiding (_⇒_)
open import Relation.Nullary.Decidable as Dec using (yes; no; _×-dec_)

------------------------------------------------------------------------
-- Definition

open import Data.Vec.Relation.Unary.AllPairs.Core public

------------------------------------------------------------------------
-- Operations

head :  {n} {xs : Vec A (suc n)}  AllPairs R xs  All (R (Vec.head xs)) (Vec.tail xs)
head (px  pxs) = px

tail :  {n} {xs : Vec A (suc n)}  AllPairs R xs  AllPairs R (Vec.tail xs)
tail (px  pxs) = pxs

uncons :  {n} {xs : Vec A (suc n)}  AllPairs R xs 
         All (R (Vec.head xs)) (Vec.tail xs) × AllPairs R (Vec.tail xs)
uncons = < head , tail >

module _ {s} {S : Rel A s} where

  map :  {n}  R  S  AllPairs R {n}  AllPairs S {n}
  map ~₁⇒~₂ [] = []
  map ~₁⇒~₂ (x~xs  pxs) = All.map ~₁⇒~₂ x~xs  (map ~₁⇒~₂ pxs)

module _ {s t} {S : Rel A s} {T : Rel A t} where

  zipWith :  {n}  R ∩ᵇ S  T  AllPairs R {n} ∩ᵘ AllPairs S {n}  AllPairs T {n}
  zipWith f ([] , [])             = []
  zipWith f (px  pxs , qx  qxs) = All.map f (All.zip (px , qx))  zipWith f (pxs , qxs)

  unzipWith :  {n}  T  R ∩ᵇ S  AllPairs T {n}  AllPairs R {n} ∩ᵘ AllPairs S {n}
  unzipWith f []         = [] , []
  unzipWith f (rx  rxs) = Prod.zip _∷_ _∷_ (All.unzip (All.map f rx)) (unzipWith f rxs)

module _ {s} {S : Rel A s} where

  zip :  {n}  AllPairs R {n} ∩ᵘ AllPairs S {n}  AllPairs (R ∩ᵇ S) {n}
  zip = zipWith id

  unzip :  {n}  AllPairs (R ∩ᵇ S) {n}  AllPairs R {n} ∩ᵘ AllPairs S {n}
  unzip = unzipWith id

------------------------------------------------------------------------
-- Properties of predicates preserved by AllPairs

allPairs? :  {n}  B.Decidable R  U.Decidable (AllPairs R {n})
allPairs? R? []       = yes []
allPairs? R? (x  xs) =
  Dec.map′ (uncurry _∷_) uncons (All.all? (R? x) xs ×-dec allPairs? R? xs)

irrelevant :  {n}  B.Irrelevant R  U.Irrelevant (AllPairs R {n})
irrelevant irr []           []           = refl
irrelevant irr (px₁  pxs₁) (px₂  pxs₂) =
  cong₂ _∷_ (All.irrelevant irr px₁ px₂) (irrelevant irr pxs₁ pxs₂)

satisfiable : U.Satisfiable (AllPairs R)
satisfiable = [] , []