------------------------------------------------------------------------
-- The Agda standard library
--
-- Inductive pointwise lifting of relations to vectors
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.Vec.Relation.Binary.Pointwise.Inductive where

open import Data.Fin.Base using (Fin; zero; suc)
open import Data.Nat.Base using (; zero; suc)
open import Data.Product.Base using (_×_; _,_; uncurry; <_,_>)
open import Data.Vec.Base as Vec hiding ([_]; head; tail; map; lookup; uncons)
open import Data.Vec.Relation.Unary.All using (All; []; _∷_)
open import Level using (Level; _⊔_)
open import Function.Base using (_∘_)
open import Function.Bundles using (_⇔_; mk⇔)
open import Relation.Binary.Core using (REL; Rel; _⇒_)
open import Relation.Binary.Bundles using (Setoid; DecSetoid)
open import Relation.Binary.Structures
  using (IsEquivalence; IsDecEquivalence)
open import Relation.Binary.Definitions
  using (Trans; Decidable; Reflexive; Sym)
open import Relation.Binary.PropositionalEquality.Core as P using (_≡_)
open import Relation.Nullary.Decidable using (yes; no; _×-dec_; map′)
open import Relation.Unary using (Pred)

private
  variable
    a b c d  ℓ₁ ℓ₂ : Level
    A : Set a
    B : Set b
    C : Set c
    D : Set d

------------------------------------------------------------------------
-- Definition

infixr 5 _∷_

data Pointwise {a b } {A : Set a} {B : Set b} (_∼_ : REL A B ) :
                {m n} (xs : Vec A m) (ys : Vec B n)  Set (a  b  )
               where
  []  : Pointwise _∼_ [] []
  _∷_ :  {m n x y} {xs : Vec A m} {ys : Vec B n}
        (x∼y : x  y) (xs∼ys : Pointwise _∼_ xs ys) 
        Pointwise _∼_ (x  xs) (y  ys)

------------------------------------------------------------------------
-- Properties

length-equal :  {m n} {_∼_ : REL A B } {xs : Vec A m} {ys : Vec B n} 
               Pointwise _∼_ xs ys  m  n
length-equal []          = P.refl
length-equal (_  xs∼ys) = P.cong suc (length-equal xs∼ys)

------------------------------------------------------------------------
-- Operations

module _ {_∼_ : REL A B } where

  head :  {m n x y} {xs : Vec A m} {ys : Vec B n} 
         Pointwise _∼_ (x  xs) (y  ys)  x  y
  head (x∼y  xs∼ys) = x∼y

  tail :  {m n x y} {xs : Vec A m} {ys : Vec B n} 
         Pointwise _∼_ (x  xs) (y  ys)  Pointwise _∼_ xs ys
  tail (x∼y  xs∼ys) = xs∼ys

  uncons :  {m n x y} {xs : Vec A m} {ys : Vec B n} 
           Pointwise _∼_ (x  xs) (y  ys)  x  y × Pointwise _∼_ xs ys
  uncons = < head , tail >

  lookup :  {n} {xs : Vec A n} {ys : Vec B n}  Pointwise _∼_ xs ys 
            i  (Vec.lookup xs i)  (Vec.lookup ys i)
  lookup (x∼y  _)     zero    = x∼y
  lookup (_    xs∼ys) (suc i) = lookup xs∼ys i

  map :  {ℓ₂} {_≈_ : REL A B ℓ₂} 
        _≈_  _∼_   {m n}  Pointwise _≈_  Pointwise _∼_ {m} {n}
  map ∼₁⇒∼₂ []             = []
  map ∼₁⇒∼₂ (x∼y  xs∼ys) = ∼₁⇒∼₂ x∼y  map ∼₁⇒∼₂ xs∼ys

------------------------------------------------------------------------
-- Relational properties

refl :  {_∼_ : Rel A } {n} 
       Reflexive _∼_  Reflexive (Pointwise _∼_ {n})
refl ∼-refl {[]}      = []
refl ∼-refl {x  xs} = ∼-refl  refl ∼-refl

sym :  {P : REL A B } {Q : REL B A } {m n} 
      Sym P Q  Sym (Pointwise P) (Pointwise Q {m} {n})
sym sm []             = []
sym sm (x∼y  xs∼ys) = sm x∼y  sym sm xs∼ys

trans :  {P : REL A B } {Q : REL B C } {R : REL A C } {m n o} 
        Trans P Q R 
        Trans (Pointwise P {m}) (Pointwise Q {n} {o}) (Pointwise R)
trans trns []             []             = []
trans trns (x∼y  xs∼ys) (y∼z  ys∼zs) =
  trns x∼y y∼z  trans trns xs∼ys ys∼zs

decidable :  {_∼_ : REL A B } 
            Decidable _∼_   {m n}  Decidable (Pointwise _∼_ {m} {n})
decidable dec []       []       = yes []
decidable dec []       (y  ys) = no λ()
decidable dec (x  xs) []       = no λ()
decidable dec (x  xs) (y  ys) =
  map′ (uncurry _∷_) uncons (dec x y ×-dec decidable dec xs ys)

------------------------------------------------------------------------
-- Structures

module _ {_∼_ : Rel A } where

  isEquivalence : IsEquivalence _∼_   n 
                  IsEquivalence (Pointwise _∼_ {n})
  isEquivalence equiv n = record
    { refl  = refl  Eq.refl
    ; sym   = sym   Eq.sym
    ; trans = trans Eq.trans
    } where module Eq = IsEquivalence equiv

  isDecEquivalence : IsDecEquivalence _∼_   n 
                     IsDecEquivalence (Pointwise _∼_ {n})
  isDecEquivalence decEquiv n = record
    { isEquivalence = isEquivalence Eq.isEquivalence n
    ; _≟_           = decidable Eq._≟_
    } where module Eq = IsDecEquivalence decEquiv

------------------------------------------------------------------------
-- Bundles

setoid : Setoid a     Setoid a (a  )
setoid S n = record
   { isEquivalence = isEquivalence Eq.isEquivalence n
   } where module Eq = Setoid S

decSetoid : DecSetoid a     DecSetoid a (a  )
decSetoid S n = record
   { isDecEquivalence = isDecEquivalence Eq.isDecEquivalence n
   } where module Eq = DecSetoid S

------------------------------------------------------------------------
-- map

module _ {_∼₁_ : REL A B ℓ₁} {_∼₂_ : REL C D ℓ₂}
         {f : A  C} {g : B  D}
         where

  map⁺ : (∀ {x y}  x ∼₁ y  f x ∼₂ g y) 
          {m n xs ys}  Pointwise _∼₁_ {m} {n} xs ys 
         Pointwise _∼₂_ (Vec.map f xs) (Vec.map g ys)
  map⁺ ∼₁⇒∼₂ []             = []
  map⁺ ∼₁⇒∼₂ (x∼y  xs∼ys) = ∼₁⇒∼₂ x∼y  map⁺ ∼₁⇒∼₂ xs∼ys

------------------------------------------------------------------------
-- _++_

module _ {_∼_ : REL A B } where

  ++⁺ :  {m n p q}
        {ws : Vec A m} {xs : Vec B p} {ys : Vec A n} {zs : Vec B q} 
        Pointwise _∼_ ws xs  Pointwise _∼_ ys zs 
        Pointwise _∼_ (ws ++ ys) (xs ++ zs)
  ++⁺ []            ys∼zs = ys∼zs
  ++⁺ (w∼x  ws∼xs) ys∼zs = w∼x  (++⁺ ws∼xs ys∼zs)

  ++ˡ⁻ :  {m n}
         (ws : Vec A m) (xs : Vec B m) {ys : Vec A n} {zs : Vec B n} 
         Pointwise _∼_ (ws ++ ys) (xs ++ zs)  Pointwise _∼_ ws xs
  ++ˡ⁻ []       []        _                    = []
  ++ˡ⁻ (w  ws) (x  xs) (w∼x  ps) = w∼x  ++ˡ⁻ ws xs ps

  ++ʳ⁻ :  {m n}
         (ws : Vec A m) (xs : Vec B m) {ys : Vec A n} {zs : Vec B n} 
         Pointwise _∼_ (ws ++ ys) (xs ++ zs)  Pointwise _∼_ ys zs
  ++ʳ⁻ [] [] ys∼zs = ys∼zs
  ++ʳ⁻ (w  ws) (x  xs) (_  ps) = ++ʳ⁻ ws xs ps

  ++⁻ :  {m n}
        (ws : Vec A m) (xs : Vec B m) {ys : Vec A n} {zs : Vec B n} 
        Pointwise _∼_ (ws ++ ys) (xs ++ zs) 
        Pointwise _∼_ ws xs × Pointwise _∼_ ys zs
  ++⁻ ws xs ps = ++ˡ⁻ ws xs ps , ++ʳ⁻ ws xs ps

------------------------------------------------------------------------
-- concat

module _ {_∼_ : REL A B } where

  concat⁺ :  {m n p q}
            {xss : Vec (Vec A m) n} {yss : Vec (Vec B p) q} 
            Pointwise (Pointwise _∼_) xss yss 
            Pointwise _∼_ (concat xss) (concat yss)
  concat⁺ []           = []
  concat⁺ (xs∼ys  ps) = ++⁺ xs∼ys (concat⁺ ps)

  concat⁻ :  {m n} (xss : Vec (Vec A m) n) (yss : Vec (Vec B m) n) 
            Pointwise _∼_ (concat xss) (concat yss) 
            Pointwise (Pointwise _∼_) xss yss
  concat⁻ []         []         [] = []
  concat⁻ (xs  xss) (ys  yss) ps =
    ++ˡ⁻ xs ys ps  concat⁻ xss yss (++ʳ⁻ xs ys ps)

------------------------------------------------------------------------
-- tabulate

module _ {_∼_ : REL A B } where

  tabulate⁺ :  {n} {f : Fin n  A} {g : Fin n  B} 
              (∀ i  f i  g i) 
              Pointwise _∼_ (tabulate f) (tabulate g)
  tabulate⁺ {zero}  f∼g = []
  tabulate⁺ {suc n} f∼g = f∼g zero  tabulate⁺ (f∼g  suc)

  tabulate⁻ :  {n} {f : Fin n  A} {g : Fin n  B} 
              Pointwise _∼_ (tabulate f) (tabulate g) 
              (∀ i  f i  g i)
  tabulate⁻ (f₀∼g₀  _)   zero    = f₀∼g₀
  tabulate⁻ (_      f∼g) (suc i) = tabulate⁻ f∼g i

------------------------------------------------------------------------
-- cong

module _ {_∼_ : Rel A } (refl : Reflexive _∼_) where
  cong-[_]≔ :  {n} i p {xs} {ys} 
              Pointwise _∼_ {n} xs ys 
              Pointwise _∼_ (xs [ i ]≔ p) (ys [ i ]≔ p)
  cong-[ zero ]≔  p (_    eqn) = refl  eqn
  cong-[ suc i ]≔ p (x∼y  eqn) = x∼y   cong-[ i ]≔ p eqn

------------------------------------------------------------------------
-- Degenerate pointwise relations

module _ {P : Pred A } where

  Pointwiseˡ⇒All :  {m n} {xs : Vec A m} {ys : Vec B n} 
                   Pointwise  x y  P x) xs ys  All P xs
  Pointwiseˡ⇒All []       = []
  Pointwiseˡ⇒All (p  ps) = p  Pointwiseˡ⇒All ps

  Pointwiseʳ⇒All :  {n} {xs : Vec B n} {ys : Vec A n} 
                   Pointwise  x y  P y) xs ys  All P ys
  Pointwiseʳ⇒All []       = []
  Pointwiseʳ⇒All (p  ps) = p  Pointwiseʳ⇒All ps

  All⇒Pointwiseˡ :  {n} {xs : Vec A n} {ys : Vec B n} 
                   All P xs  Pointwise  x y  P x) xs ys
  All⇒Pointwiseˡ {ys = []}    []       = []
  All⇒Pointwiseˡ {ys = _  _} (p  ps) = p  All⇒Pointwiseˡ ps

  All⇒Pointwiseʳ :  {n} {xs : Vec B n} {ys : Vec A n} 
                   All P ys  Pointwise  x y  P y) xs ys
  All⇒Pointwiseʳ {xs = []}    []       = []
  All⇒Pointwiseʳ {xs = _  _} (p  ps) = p  All⇒Pointwiseʳ ps

------------------------------------------------------------------------
-- Pointwise _≡_ is equivalent to _≡_

Pointwise-≡⇒≡ :  {n} {xs ys : Vec A n}  Pointwise _≡_ xs ys  xs  ys
Pointwise-≡⇒≡ []               = P.refl
Pointwise-≡⇒≡ (P.refl  xs∼ys) = P.cong (_ ∷_) (Pointwise-≡⇒≡ xs∼ys)

≡⇒Pointwise-≡ :  {n} {xs ys : Vec A n}  xs  ys  Pointwise _≡_ xs ys
≡⇒Pointwise-≡ P.refl = refl P.refl

Pointwise-≡↔≡ :  {n} {xs ys : Vec A n}  Pointwise _≡_ xs ys  xs  ys
Pointwise-≡↔≡ = mk⇔ Pointwise-≡⇒≡ ≡⇒Pointwise-≡