{-# OPTIONS --cubical-compatible --safe #-}
open import Data.Nat.Base using (ℕ)
open import Data.Vec.Functional as VF hiding (map)
open import Data.Vec.Functional.Relation.Binary.Pointwise
using (Pointwise)
import Data.Vec.Functional.Relation.Binary.Pointwise.Properties as PW
open import Level using (Level)
open import Relation.Binary.Core using (_⇒_)
open import Relation.Binary.Bundles using (Setoid)
open import Relation.Binary.Structures using (IsEquivalence)
open import Relation.Binary.Definitions
using (Reflexive; Symmetric; Transitive)
open import Relation.Binary.PropositionalEquality.Core as P using (_≡_)
module Data.Vec.Functional.Relation.Binary.Equality.Setoid
{a ℓ} (S : Setoid a ℓ) where
open Setoid S renaming (Carrier to A)
infix 4 _≋_
_≋_ : ∀ {n} → Vector A n → Vector A n → Set ℓ
_≋_ = Pointwise _≈_
≋-refl : ∀ {n} → Reflexive (_≋_ {n = n})
≋-refl {n} = PW.refl {R = _≈_} refl
≋-reflexive : ∀ {n} → _≡_ ⇒ (_≋_ {n = n})
≋-reflexive P.refl = ≋-refl
≋-sym : ∀ {n} → Symmetric (_≋_ {n = n})
≋-sym = PW.sym {R = _≈_} sym
≋-trans : ∀ {n} → Transitive (_≋_ {n = n})
≋-trans = PW.trans {R = _≈_} trans
≋-isEquivalence : ∀ n → IsEquivalence (_≋_ {n = n})
≋-isEquivalence = PW.isEquivalence isEquivalence
≋-setoid : ℕ → Setoid _ _
≋-setoid = PW.setoid S
open PW public
using
( map⁺
; head⁺; tail⁺
; ++⁺; ++⁻ˡ; ++⁻ʳ; ++⁻
; replicate⁺
; ⊛⁺
; zipWith⁺; zip⁺; zip⁻
)
foldr-cong : ∀ {f g} → (∀ {w x y z} → w ≈ x → y ≈ z → f w y ≈ g x z) →
∀ {d e : A} → d ≈ e →
∀ {n} {xs ys : Vector A n} → xs ≋ ys →
foldr f d xs ≈ foldr g e ys
foldr-cong = PW.foldr-cong