{-# OPTIONS --cubical-compatible --sized-types #-}
open import Relation.Binary.Bundles using (StrictTotalOrder)
module Data.Trie.NonEmpty {k e r} (S : StrictTotalOrder k e r) where
open import Level
open import Size
open import Effect.Monad
open import Data.Product.Base as Prod using (∃; uncurry; -,_)
open import Data.List.Base as List using (List; []; _∷_; _++_)
open import Data.List.NonEmpty as List⁺ using (List⁺; [_]; concatMap)
open import Data.Maybe.Base as Maybe using (Maybe; nothing; just; maybe′) hiding (module Maybe)
open import Data.These as These using (These; this; that; these)
open import Function.Base as F
import Function.Identity.Effectful as Identity
open import Relation.Unary using (_⇒_; IUniversal)
open StrictTotalOrder S
using (module Eq)
renaming (Carrier to Key)
open import Data.List.Relation.Binary.Equality.Setoid Eq.setoid
open import Data.Tree.AVL.Value hiding (Value)
open import Data.Tree.AVL.Value ≋-setoid using (Value)
open import Data.Tree.AVL.NonEmpty S as Tree⁺ using (Tree⁺)
open Value
Word : Set k
Word = List Key
eat : ∀ {v} → Value v → Word → Value v
family (eat V ks) = family V ∘′ (ks ++_)
respects (eat V ks) = respects V ∘′ ++⁺ ≋-refl
data Trie⁺ {v} (V : Value v) : Size → Set (v ⊔ k ⊔ e ⊔ r)
Tries⁺ : ∀ {v} (V : Value v) (i : Size) → Set (v ⊔ k ⊔ e ⊔ r)
map : ∀ {v w} (V : Value v) (W : Value w) {i} →
∀[ family V ⇒ family W ] →
Trie⁺ V i → Trie⁺ W i
data Trie⁺ V where
node : ∀ {i} → These (family V []) (Tries⁺ V i) → Trie⁺ V (↑ i)
Tries⁺ V j = Tree⁺ $ MkValue (λ k → Trie⁺ (eat V (k ∷ [])) j)
$ λ eq → map _ _ (respects V (eq ∷ ≋-refl))
map V W f (node t) = node $ These.map f (Tree⁺.map (map _ _ f)) t
lookup : ∀ {v} {V : Value v} → Trie⁺ V ∞ → ∀ ks →
Maybe (These (family V ks) (Tries⁺ (eat V ks) ∞))
lookup (node nd) [] = just (These.map₂ (Tree⁺.map id) nd)
lookup (node nd) (k ∷ ks) = let open Maybe in do
ts ← These.fromThat nd
t ← Tree⁺.lookup ts k
lookup t ks
module _ {v} {V : Value v} where
lookupValue : Trie⁺ V ∞ → (ks : Word) → Maybe (family V ks)
lookupValue t ks = lookup t ks Maybe.>>= These.fromThis
lookupTries⁺ : Trie⁺ V ∞ → ∀ ks → Maybe (Tries⁺ (eat V ks) ∞)
lookupTries⁺ t ks = lookup t ks Maybe.>>= These.fromThat
lookupTrie⁺ : Trie⁺ V ∞ → ∀ k → Maybe (Trie⁺ (eat V (k ∷ [])) ∞)
lookupTrie⁺ t k = lookupTries⁺ t [] Maybe.>>= λ ts → Tree⁺.lookup ts k
singleton : ∀ {v} {V : Value v} ks → family V ks → Trie⁺ V ∞
singleton [] v = node (this v)
singleton (k ∷ ks) v = node (that (Tree⁺.singleton k (singleton ks v)))
insertWith : ∀ {v} {V : Value v} ks → (Maybe (family V ks) → family V ks) →
Trie⁺ V ∞ → Trie⁺ V ∞
insertWith [] f (node nd) =
node (These.fold (this ∘ f ∘ just) (these (f nothing)) (these ∘ f ∘ just) nd)
insertWith {v} {V} (k ∷ ks) f (node {j} nd) = node $
These.fold (λ v → these v (Tree⁺.singleton k end))
(that ∘′ rec)
(λ v → these v ∘′ rec)
nd
where
end : Trie⁺ (eat V (k ∷ [])) ∞
end = singleton ks (f nothing)
rec : Tries⁺ V ∞ → Tries⁺ V ∞
rec = Tree⁺.insertWith k (maybe′ (insertWith ks f) end)
module _ {v} {V : Value v} where
private Val = family V
insert : ∀ ks → Val ks → Trie⁺ V ∞ → Trie⁺ V ∞
insert ks = insertWith ks ∘′ F.const
fromList⁺ : List⁺ (∃ Val) → Trie⁺ V ∞
fromList⁺ = List⁺.foldr (uncurry insert) (uncurry singleton)
toList⁺ : ∀ {v} {V : Value v} {i} → let Val = Value.family V in
Trie⁺ V i → List⁺ (∃ Val)
toList⁺ (node nd) = These.mergeThese List⁺._⁺++⁺_
$ These.map fromVal fromTries⁺ nd
where
fromVal = [_] ∘′ -,_
fromTrie⁺ = λ (k , v) → List⁺.map (Prod.map (k ∷_) id) (toList⁺ v)
fromTries⁺ = concatMap fromTrie⁺ ∘′ Tree⁺.toList⁺
deleteWith : ∀ {v} {V : Value v} {i} ks →
(∀ {i} → Trie⁺ (eat V ks) i → Maybe (Trie⁺ (eat V ks) i)) →
Trie⁺ V i → Maybe (Trie⁺ V i)
deleteWith [] f t = f t
deleteWith (k ∷ ks) f t@(node nd) = let open RawMonad Identity.monad in do
just ts ← These.fromThat nd where _ → just t
just t′ ← Tree⁺.lookup ts k where _ → just t
Maybe.map node ∘′ Maybe.align (These.fromThis nd) $′ case deleteWith ks f t′ of λ where
nothing → Tree⁺.delete k ts
(just u) → just (Tree⁺.insert k u ts)
module _ {v} {V : Value v} where
deleteTrie⁺ : ∀ {i} (ks : Word) → Trie⁺ V i → Maybe (Trie⁺ V i)
deleteTrie⁺ ks = deleteWith ks (F.const nothing)
deleteValue : ∀ {i} (ks : Word) → Trie⁺ V i → Maybe (Trie⁺ V i)
deleteValue ks = deleteWith ks $ λ where
(node nd) → Maybe.map node $′ These.deleteThis nd
deleteTries⁺ : ∀ {i} (ks : Word) → Trie⁺ V i → Maybe (Trie⁺ V i)
deleteTries⁺ ks = deleteWith ks $ λ where
(node nd) → Maybe.map node $′ These.deleteThat nd