------------------------------------------------------------------------
-- The Agda standard library
--
-- 1 dimensional pretty printing of rose trees
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --sized-types #-}

module Data.Tree.Rose.Show where

open import Level using (Level)
open import Size
open import Data.Bool.Base using (Bool; true; false; if_then_else_; _∧_)
open import Data.DifferenceList as DList renaming (DiffList to DList) using ()
open import Data.List.Base as List using (List; []; [_]; _∷_; _∷ʳ_)
open import Data.Nat.Base using (; _∸_)
open import Data.Product.Base using (_×_; _,_)
open import Data.String.Base hiding (show)
open import Data.Tree.Rose using (Rose; node; map; fromBinary)
open import Function.Base using (flip; _∘′_; id)

private
  variable
    a : Level
    A : Set a
    i : Size

display : Rose (List String) i  List String
display t = DList.toList (go (([] , t)  []))
  where
  padding : Bool  List Bool  String  String
  padding dir? []       str = str
  padding dir? (b  bs) str =
    (if dir?  List.null bs
     then if b then " ├ " else " └ "
     else if b then " │ "  else "   ")
    ++ padding dir? bs str

  nodePrefixes : List A  List Bool
  nodePrefixes as = true  List.replicate (List.length as  1) false

  childrenPrefixes : List A  List Bool
  childrenPrefixes as = List.replicate (List.length as  1) true ∷ʳ false

  go : List (List Bool × Rose (List String) i)  DList String
  go []                       = DList.[]
  go ((bs , node a ts₁)  ts) =
    let bs′ = List.reverse bs in
    DList.fromList (List.zipWith (flip padding bs′) (nodePrefixes a) a)
    DList.++ go (List.zip (List.map (_∷ bs) (childrenPrefixes ts₁)) ts₁)
    DList.++ go ts

show : (A  List String)  Rose A i  List String
show toString = display ∘′ map toString

showSimple : (A  String)  Rose A i  List String
showSimple toString = show ([_] ∘′ toString)