{-# OPTIONS --cubical-compatible --safe #-}
module Data.Tree.Binary.Zipper.Properties where
open import Data.Tree.Binary as BT using (Tree; node; leaf)
open import Data.Tree.Binary.Zipper
open import Data.Nat using (ℕ; suc; _+_)
open import Data.Nat.Properties
open import Data.List.Base as List using (List ; [] ; _∷_; sum)
open import Data.Maybe.Base using (Maybe; just; nothing)
open import Data.Maybe.Relation.Unary.All using (All; just; nothing)
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open import Function.Base using (_on_; _∘_; _$_)
open import Level using (Level)
private
variable
a n l n₁ l₁ : Level
A : Set a
N : Set n
L : Set l
N₁ : Set n₁
L₁ : Set l₁
toTree-up-identity : (zp : Zipper N L) → All ((_≡_ on toTree) zp) (up zp)
toTree-up-identity (mkZipper [] foc) = nothing
toTree-up-identity (mkZipper (leftBranch m l ∷ ctx) foc) = just refl
toTree-up-identity (mkZipper (rightBranch m r ∷ ctx) foc) = just refl
toTree-left-identity : (zp : Zipper N L) → All ((_≡_ on toTree) zp) (left zp)
toTree-left-identity (mkZipper ctx (leaf x)) = nothing
toTree-left-identity (mkZipper ctx (node l m r)) = just refl
toTree-right-identity : (zp : Zipper N L) → All ((_≡_ on toTree) zp) (right zp)
toTree-right-identity (mkZipper ctx (leaf x)) = nothing
toTree-right-identity (mkZipper ctx (node l m r)) = just refl
toTree-#nodes : ∀ (zp : Zipper N L) → #nodes zp ≡ BT.#nodes (toTree zp)
toTree-#nodes (mkZipper c v) = helper c v
where
helper : (cs : List (Crumb N L)) →
(t : Tree N L) →
#nodes (mkZipper cs t) ≡ BT.#nodes (toTree (mkZipper cs t))
helper [] foc = +-identityʳ (BT.#nodes foc)
helper cs@(leftBranch m l ∷ ctx) foc = let
#ctx = sum (List.map (suc ∘ BT.#nodes ∘ getTree) ctx)
#foc = BT.#nodes foc
#l = BT.#nodes l in begin
#foc + (1 + (#l + #ctx)) ≡⟨ +-assoc #foc 1 (#l + #ctx) ⟨
#foc + 1 + (#l + #ctx) ≡⟨ cong (_+ (#l + #ctx)) (+-comm #foc 1) ⟩
1 + #foc + (#l + #ctx) ≡⟨ +-assoc (1 + #foc) #l #ctx ⟨
1 + #foc + #l + #ctx ≡⟨ cong (_+ #ctx) (+-comm (1 + #foc) #l) ⟩
#nodes (mkZipper ctx (node l m foc)) ≡⟨ helper ctx (node l m foc) ⟩
BT.#nodes (toTree (mkZipper cs foc)) ∎
helper cs@(rightBranch m r ∷ ctx) foc = let
#ctx = sum (List.map (suc ∘ BT.#nodes ∘ getTree) ctx)
#foc = BT.#nodes foc
#r = BT.#nodes r in begin
#foc + (1 + (#r + #ctx)) ≡⟨ cong (#foc +_) (+-assoc 1 #r #ctx) ⟨
#foc + (1 + #r + #ctx) ≡⟨ +-assoc #foc (suc #r) #ctx ⟨
#nodes (mkZipper ctx (node foc m r)) ≡⟨ helper ctx (node foc m r) ⟩
BT.#nodes (toTree (mkZipper cs foc)) ∎
toTree-#leaves : ∀ (zp : Zipper N L) → #leaves zp ≡ BT.#leaves (toTree zp)
toTree-#leaves (mkZipper c v) = helper c v
where
helper : (cs : List (Crumb N L)) →
(t : Tree N L) →
#leaves (mkZipper cs t) ≡ BT.#leaves (toTree (mkZipper cs t))
helper [] foc = +-identityʳ (BT.#leaves foc)
helper cs@(leftBranch m l ∷ ctx) foc = let
#ctx = sum (List.map (BT.#leaves ∘ getTree) ctx)
#foc = BT.#leaves foc
#l = BT.#leaves l in begin
#foc + (#l + #ctx) ≡⟨ +-assoc #foc #l #ctx ⟨
#foc + #l + #ctx ≡⟨ cong (_+ #ctx) (+-comm #foc #l) ⟩
#leaves (mkZipper ctx (node l m foc)) ≡⟨ helper ctx (node l m foc) ⟩
BT.#leaves (toTree (mkZipper cs foc)) ∎
helper cs@(rightBranch m r ∷ ctx) foc = let
#ctx = sum (List.map (BT.#leaves ∘ getTree) ctx)
#foc = BT.#leaves foc
#r = BT.#leaves r in begin
#foc + (#r + #ctx) ≡⟨ +-assoc #foc #r #ctx ⟨
#leaves (mkZipper ctx (node foc m r)) ≡⟨ helper ctx (node foc m r) ⟩
BT.#leaves (toTree (mkZipper cs foc)) ∎
toTree-map : ∀ (f : N → N₁) (g : L → L₁) zp → toTree (map f g zp) ≡ BT.map f g (toTree zp)
toTree-map {N = N} {L = L} f g (mkZipper c v) = helper c v
where
helper : (cs : List (Crumb N L)) →
(t : Tree N L) →
toTree (map f g (mkZipper cs t)) ≡ BT.map f g (toTree (mkZipper cs t))
helper [] foc = refl
helper (leftBranch m l ∷ ctx) foc = helper ctx (node l m foc)
helper (rightBranch m r ∷ ctx) foc = helper ctx (node foc m r)
toTree-foldr : ∀ (f : A → N → A → A) (g : L → A) zp → foldr f g zp ≡ BT.foldr f g (toTree zp)
toTree-foldr {N = N} {L = L} f g (mkZipper c v) = helper c v
where
helper : (cs : List (Crumb N L)) →
(t : Tree N L) →
foldr f g (mkZipper cs t) ≡ BT.foldr f g (toTree (mkZipper cs t))
helper [] foc = refl
helper (leftBranch m l ∷ ctx) foc = helper ctx (node l m foc)
helper (rightBranch m r ∷ ctx) foc = helper ctx (node foc m r)
toTree-⟪⟫ˡ : ∀ l m (zp : Zipper N L) → toTree (l ⟪ m ⟫ˡ zp) ≡ node l m (toTree zp)
toTree-⟪⟫ˡ {N = N} {L = L} l m (mkZipper c v) = helper c v
where
helper : (cs : List (Crumb N L)) →
(t : Tree N L) →
toTree (l ⟪ m ⟫ˡ mkZipper cs t) ≡ node l m (toTree $ mkZipper cs t)
helper [] foc = refl
helper (leftBranch m l ∷ ctx) foc = helper ctx (node l m foc)
helper (rightBranch m r ∷ ctx) foc = helper ctx (node foc m r)
toTree-⟪⟫ʳ : ∀ (zp : Zipper N L) m r → toTree (zp ⟪ m ⟫ʳ r) ≡ node (toTree zp) m r
toTree-⟪⟫ʳ {N = N} {L = L} (mkZipper c v) m r = helper c v
where
helper : (cs : List (Crumb N L)) →
(t : Tree N L) →
toTree (mkZipper cs t ⟪ m ⟫ʳ r) ≡ node (toTree $ mkZipper cs t) m r
helper [] foc = refl
helper (leftBranch m l ∷ ctx) foc = helper ctx (node l m foc)
helper (rightBranch m r ∷ ctx) foc = helper ctx (node foc m r)
toTree-#nodes-commute = toTree-#nodes
{-# WARNING_ON_USAGE toTree-#nodes-commute
"Warning: toTree-#nodes-commute was deprecated in v2.0.
Please use toTree-#nodes instead."
#-}
toTree-#leaves-commute = toTree-#leaves
{-# WARNING_ON_USAGE toTree-#leaves-commute
"Warning: toTree-#leaves-commute was deprecated in v2.0.
Please use toTree-#leaves instead."
#-}
toTree-map-commute = toTree-map
{-# WARNING_ON_USAGE toTree-map-commute
"Warning: toTree-map-commute was deprecated in v2.0.
Please use toTree-map instead."
#-}
toTree-foldr-commute = toTree-foldr
{-# WARNING_ON_USAGE toTree-foldr-commute
"Warning: toTree-foldr-commute was deprecated in v2.0.
Please use toTree-foldr instead."
#-}
toTree-⟪⟫ˡ-commute = toTree-⟪⟫ˡ
{-# WARNING_ON_USAGE toTree-⟪⟫ˡ-commute
"Warning: toTree-⟪⟫ˡ-commute was deprecated in v2.0.
Please use toTree-⟪⟫ˡ instead."
#-}
toTree-⟪⟫ʳ-commute = toTree-⟪⟫ʳ
{-# WARNING_ON_USAGE toTree-⟪⟫ʳ-commute
"Warning: toTree-⟪⟫ʳ-commute was deprecated in v2.0.
Please use toTree-⟪⟫ʳ instead."
#-}