------------------------------------------------------------------------
-- The Agda standard library
--
-- Pointwise lifting of binary relations to sigma types
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.Product.Relation.Binary.Pointwise.Dependent where

open import Data.Product.Base as Prod
open import Level
open import Function.Base
open import Relation.Binary.Core using (Rel; REL; _⇒_)
open import Relation.Binary.Bundles using (Setoid)
open import Relation.Binary.Structures using (IsEquivalence)
open import Relation.Binary.Definitions as B
open import Relation.Binary.Indexed.Heterogeneous as I
  using (IREL; IRel; IndexedSetoid; IsIndexedEquivalence)
open import Relation.Binary.PropositionalEquality.Core as P using (_≡_)

------------------------------------------------------------------------
-- Pointwise lifting

infixr 4 _,_

record POINTWISE {a₁ a₂ b₁ b₂ ℓ₁ ℓ₂}
                 {A₁ : Set a₁} (B₁ : A₁  Set b₁)
                 {A₂ : Set a₂} (B₂ : A₂  Set b₂)
                 (_R₁_ : REL A₁ A₂ ℓ₁) (_R₂_ : IREL B₁ B₂ ℓ₂)
                 (xy₁ : Σ A₁ B₁) (xy₂ : Σ A₂ B₂)
                 : Set (a₁  a₂  b₁  b₂  ℓ₁  ℓ₂) where
  constructor _,_
  field
    proj₁ : (proj₁ xy₁) R₁ (proj₁ xy₂)
    proj₂ : (proj₂ xy₁) R₂ (proj₂ xy₂)

open POINTWISE public

Pointwise :  {a b ℓ₁ ℓ₂} {A : Set a} (B : A  Set b)
            (_R₁_ : Rel A ℓ₁) (_R₂_ : IRel B ℓ₂)  Rel (Σ A B) _
Pointwise B = POINTWISE B B

------------------------------------------------------------------------
-- Pointwise preserves many relational properties

module _ {a b ℓ₁ ℓ₂} {A : Set a} {B : A  Set b}
         {R : Rel A ℓ₁} {S : IRel B ℓ₂} where

  private
    R×S = Pointwise B R S

  refl : B.Reflexive R  I.Reflexive B S  B.Reflexive R×S
  refl refl₁ refl₂ = (refl₁ , refl₂)

  symmetric : B.Symmetric R  I.Symmetric B S  B.Symmetric R×S
  symmetric sym₁ sym₂ (x₁Rx₂ , y₁Ry₂) = (sym₁ x₁Rx₂ , sym₂ y₁Ry₂)

  transitive : B.Transitive R  I.Transitive B S  B.Transitive R×S
  transitive trans₁ trans₂ (x₁Rx₂ , y₁Ry₂) (x₂Rx₃ , y₂Ry₃) =
    (trans₁ x₁Rx₂ x₂Rx₃ , trans₂ y₁Ry₂ y₂Ry₃)

  isEquivalence : IsEquivalence R  IsIndexedEquivalence B S 
                  IsEquivalence R×S
  isEquivalence eq₁ eq₂ = record
    { refl  = refl       Eq.refl  IEq.refl
    ; sym   = symmetric  Eq.sym   IEq.sym
    ; trans = transitive Eq.trans IEq.trans
    } where
    module Eq = IsEquivalence eq₁
    module IEq = IsIndexedEquivalence eq₂

module _ {a b ℓ₁ ℓ₂} where

  setoid : (A : Setoid a ℓ₁) 
           IndexedSetoid (Setoid.Carrier A) b ℓ₂ 
           Setoid _ _
  setoid s₁ s₂ = record
    { isEquivalence = isEquivalence Eq.isEquivalence IEq.isEquivalence
    } where
    module Eq = Setoid s₁
    module IEq = IndexedSetoid s₂