{-# OPTIONS --with-K --safe #-}
module Data.Nat.DivMod.WithK where
open import Data.Nat using (ℕ; NonZero; _+_; _*_)
open import Data.Nat.DivMod hiding (_mod_; _divMod_)
open import Data.Nat.Properties using (≤⇒≤″)
open import Data.Nat.WithK
open import Data.Fin.Base using (Fin; toℕ; fromℕ<″)
open import Data.Fin.Properties using (toℕ-fromℕ<″)
open import Function.Base using (_$_)
open import Relation.Binary.PropositionalEquality
using (cong; module ≡-Reasoning)
open import Relation.Binary.PropositionalEquality.WithK
open ≡-Reasoning
infixl 7 _mod_ _divMod_
_mod_ : (dividend divisor : ℕ) → .{{ _ : NonZero divisor }} → Fin divisor
m mod n = fromℕ<″ (m % n) (≤″-erase (≤⇒≤″ (m%n<n m n)))
_divMod_ : (dividend divisor : ℕ) → .{{ NonZero divisor }} →
DivMod dividend divisor
m divMod n = result (m / n) (m mod n) $ ≡-erase $ begin
m ≡⟨ m≡m%n+[m/n]*n m n ⟩
m % n + [m/n]*n ≡⟨ cong (_+ [m/n]*n) (toℕ-fromℕ<″ lemma″) ⟨
toℕ (fromℕ<″ _ lemma″) + [m/n]*n ∎
where [m/n]*n = m / n * n ; lemma″ = ≤″-erase (≤⇒≤″ (m%n<n m n))