------------------------------------------------------------------------
-- The Agda standard library
--
-- Subtraction on Bin and some of its properties.
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.Nat.Binary.Subtraction where

open import Algebra using (Op₂; Magma)
open import Algebra.Consequences.Propositional using (comm∧distrˡ⇒distrʳ)
open import Algebra.Morphism.Consequences using (homomorphic₂-inv)
open import Data.Bool.Base using (true; false)
open import Data.Nat as  using ()
open import Data.Nat.Binary.Base
open import Data.Nat.Binary.Properties
import Data.Nat.Properties as ℕₚ
open import Data.Product.Base using (_×_; _,_; proj₁; proj₂; )
open import Data.Sum.Base using (inj₁; inj₂)
open import Data.Vec.Base using ([]; _∷_)
open import Function.Base using (_∘_; _$_)
open import Level using (0ℓ)
open import Relation.Binary
  using (Tri; tri<; tri≈; tri>; _Preserves_⟶_; _Preserves₂_⟶_⟶_)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary using (Dec; yes; no; does)
open import Relation.Nullary.Negation using (contradiction)

open import Algebra.Definitions {A = ℕᵇ} _≡_
open import Algebra.Properties.CommutativeSemigroup +-commutativeSemigroup
  using (xy∙z≈y∙xz; x∙yz≈y∙xz)
open import Algebra.Solver.CommutativeMonoid +-0-commutativeMonoid

private
  variable
    x y : ℕᵇ

------------------------------------------------------------------------
-- Definition

infixl 6 _∸_

_∸_ : Op₂ ℕᵇ
zero      _        = 0ᵇ
x         zero     = x
2[1+ x ]  2[1+ y ] = double (x  y)
1+[2 x ]  1+[2 y ] = double (x  y)
2[1+ x ]  1+[2 y ] with does (x <? y)
... | true  = 0ᵇ
... | false = 1+[2 (x  y) ]
1+[2 x ]  2[1+ y ] with does (x ≤? y)
... | true  = 0ᵇ
... | false = pred (double (x  y))

------------------------------------------------------------------------
-- Properties of _∸_ and _≡_

∸-magma : Magma 0ℓ 0ℓ
∸-magma = magma _∸_

x∸0≡x :  x  x  0ᵇ  x
x∸0≡x zero     = refl
x∸0≡x 2[1+ _ ] = refl
x∸0≡x 1+[2 _ ] = refl

x∸x≡0 :  x  x  x  0ᵇ
x∸x≡0 zero     = refl
x∸x≡0 2[1+ x ] = x≡0⇒double[x]≡0 (x∸x≡0 x)
x∸x≡0 1+[2 x ] = x≡0⇒double[x]≡0 (x∸x≡0 x)

toℕ-homo-∸ :  x y  toℕ (x  y)  (toℕ x) ℕ.∸ (toℕ y)
toℕ-homo-∸ zero     zero     = refl
toℕ-homo-∸ zero     2[1+ y ] = refl
toℕ-homo-∸ zero     1+[2 y ] = refl
toℕ-homo-∸ 2[1+ x ] zero     = refl
toℕ-homo-∸ 2[1+ x ] 2[1+ y ] = begin
  toℕ (double (x  y))          ≡⟨ toℕ-double (x  y) 
  2 ℕ.* toℕ (x  y)             ≡⟨ cong (2 ℕ.*_) (toℕ-homo-∸ x y) 
  2 ℕ.* (toℕ x ℕ.∸ toℕ y)       ≡⟨ ℕₚ.*-distribˡ-∸ 2 (ℕ.suc (toℕ x)) (ℕ.suc (toℕ y)) 
  toℕ 2[1+ x ] ℕ.∸ toℕ 2[1+ y ] 
  where open ≡-Reasoning
toℕ-homo-∸ 2[1+ x ] 1+[2 y ] with x <? y
... | yes x<y  = sym (ℕₚ.m≤n⇒m∸n≡0 (toℕ-mono-≤ (inj₁ (even<odd x<y))))
... | no  x≮y  = begin
  ℕ.suc (2 ℕ.* toℕ (x  y))                     ≡⟨ cong (ℕ.suc  (2 ℕ.*_)) (toℕ-homo-∸ x y) 
  ℕ.suc (2 ℕ.* (toℕ x ℕ.∸ toℕ y))               ≡⟨ cong ℕ.suc (ℕₚ.*-distribˡ-∸ 2 (toℕ x) (toℕ y)) 
  ℕ.suc (2 ℕ.* toℕ x ℕ.∸ 2 ℕ.* toℕ y)           ≡⟨ sym (ℕₚ.+-∸-assoc 1 (ℕₚ.*-monoʳ-≤ 2 (toℕ-mono-≤ (≮⇒≥ x≮y)))) 
  ℕ.suc (2 ℕ.* toℕ x) ℕ.∸ 2 ℕ.* toℕ y           ≡⟨ sym (cong (ℕ._∸ 2 ℕ.* toℕ y) (ℕₚ.+-suc (toℕ x) (1 ℕ.* toℕ x))) 
  2 ℕ.* (ℕ.suc (toℕ x)) ℕ.∸ ℕ.suc (2 ℕ.* toℕ y) 
  where open ≡-Reasoning
toℕ-homo-∸ 1+[2 x ] zero     = refl
toℕ-homo-∸ 1+[2 x ] 2[1+ y ] with x ≤? y
... | yes x≤y = sym (ℕₚ.m≤n⇒m∸n≡0 (toℕ-mono-≤ (inj₁ (odd<even x≤y))))
... | no  _   = begin
  toℕ (pred (double (x  y)))                   ≡⟨ toℕ-pred (double (x  y)) 
  ℕ.pred (toℕ (double (x  y)))                 ≡⟨ cong ℕ.pred (toℕ-double (x  y)) 
  ℕ.pred (2 ℕ.* toℕ (x  y))                    ≡⟨ cong (ℕ.pred  (2 ℕ.*_)) (toℕ-homo-∸ x y) 
  ℕ.pred (2 ℕ.* (toℕ x ℕ.∸ toℕ y))              ≡⟨ cong ℕ.pred (ℕₚ.*-distribˡ-∸ 2 (toℕ x) (toℕ y)) 
  ℕ.pred (2 ℕ.* toℕ x ℕ.∸ 2 ℕ.* toℕ y)          ≡⟨ ℕₚ.pred[m∸n]≡m∸[1+n] (2 ℕ.* toℕ x) (2 ℕ.* toℕ y) 
  2 ℕ.* toℕ x ℕ.∸ ℕ.suc (2 ℕ.* toℕ y)           ≡⟨ sym (cong (2 ℕ.* toℕ x ℕ.∸_) (ℕₚ.+-suc (toℕ y) (1 ℕ.* toℕ y))) 
  ℕ.suc (2 ℕ.* toℕ x) ℕ.∸ 2 ℕ.* (ℕ.suc (toℕ y)) 
  where open ≡-Reasoning
toℕ-homo-∸ 1+[2 x ] 1+[2 y ] = begin
  toℕ (double (x  y))        ≡⟨ toℕ-double (x  y) 
  2 ℕ.* toℕ (x  y)           ≡⟨ cong (2 ℕ.*_) (toℕ-homo-∸ x y) 
  2 ℕ.* (toℕ x ℕ.∸ toℕ y)     ≡⟨ ℕₚ.*-distribˡ-∸ 2 (toℕ x) (toℕ y) 
  2 ℕ.* toℕ x ℕ.∸ 2 ℕ.* toℕ y 
  where open ≡-Reasoning

fromℕ-homo-∸ :  m n  fromℕ (m ℕ.∸ n)  (fromℕ m)  (fromℕ n)
fromℕ-homo-∸ = homomorphic₂-inv ∸-magma ℕₚ.∸-magma
  (cong fromℕ) toℕ-inverseᵇ toℕ-homo-∸

------------------------------------------------------------------------
-- Properties of _∸_ and _≤_/_<_

even∸odd-for≥ : x  y  2[1+ x ]  1+[2 y ]  1+[2 (x  y) ]
even∸odd-for≥ {x} {y} x≥y with x <? y
... | no _    = refl
... | yes x<y = contradiction x≥y (<⇒≱ x<y)

odd∸even-for> : x > y  1+[2 x ]  2[1+ y ]  pred (double (x  y))
odd∸even-for> {x} {y} x>y with x ≤? y
... | no _    = refl
... | yes x≤y = contradiction x>y (≤⇒≯ x≤y)

x≤y⇒x∸y≡0 : x  y  x  y  0ᵇ
x≤y⇒x∸y≡0 {x} {y} = toℕ-injective  trans (toℕ-homo-∸ x y)  ℕₚ.m≤n⇒m∸n≡0  toℕ-mono-≤

x∸y≡0⇒x≤y : x  y  0ᵇ  x  y
x∸y≡0⇒x≤y {x} {y} = toℕ-cancel-≤  ℕₚ.m∸n≡0⇒m≤n  trans (sym (toℕ-homo-∸ x y))  cong toℕ

x<y⇒y∸x>0 : x < y  y  x > 0ᵇ
x<y⇒y∸x>0 {x} {y} = toℕ-cancel-<  subst (ℕ._> 0) (sym (toℕ-homo-∸ y x))  ℕₚ.m<n⇒0<n∸m  toℕ-mono-<

------------------------------------------------------------------------
-- Properties of _∸_ and _+_

[x∸y]+y≡x : x  y  (x  y) + y  x
[x∸y]+y≡x {x} {y} x≥y = toℕ-injective (begin
  toℕ (x  y + y)             ≡⟨ toℕ-homo-+ (x  y) y 
  toℕ (x  y) ℕ.+ toℕ y       ≡⟨ cong (ℕ._+ toℕ y) (toℕ-homo-∸ x y) 
  (toℕ x ℕ.∸ toℕ y) ℕ.+ toℕ y ≡⟨ ℕₚ.m∸n+n≡m (toℕ-mono-≤ x≥y) 
  toℕ x                       )
  where open ≡-Reasoning

x+y∸y≡x :  x y  (x + y)  y  x
x+y∸y≡x x y = +-cancelʳ-≡ _ _ x ([x∸y]+y≡x (x≤y+x y x))

[x+y]∸x≡y :  x y  (x + y)  x  y
[x+y]∸x≡y x y = trans (cong (_∸ x) (+-comm x y)) (x+y∸y≡x y x)

x+[y∸x]≡y : x  y  x + (y  x)  y
x+[y∸x]≡y {x} {y} x≤y = begin-equality
  x + (y  x)   ≡⟨ +-comm x _ 
  (y  x) + x   ≡⟨ [x∸y]+y≡x x≤y 
  y             
  where open ≤-Reasoning

∸-+-assoc :  x y z  (x  y)  z  x  (y + z)
∸-+-assoc x y z = toℕ-injective $ begin
  toℕ ((x  y)  z)       ≡⟨ toℕ-homo-∸ (x  y) z 
  toℕ (x  y) ℕ.∸ n       ≡⟨ cong (ℕ._∸ n) (toℕ-homo-∸ x y) 
  (k ℕ.∸ m) ℕ.∸ n         ≡⟨ ℕₚ.∸-+-assoc k m n 
  k ℕ.∸ (m ℕ.+ n)         ≡⟨ cong (k ℕ.∸_) (sym (toℕ-homo-+ y z)) 
  k ℕ.∸ (toℕ (y + z))     ≡⟨ sym (toℕ-homo-∸ x (y + z)) 
  toℕ (x  (y + z))       
  where open ≡-Reasoning;  k = toℕ x;  m = toℕ y;  n = toℕ z

+-∸-assoc :  x {y z}  z  y  (x + y)  z  x + (y  z)
+-∸-assoc x {y} {z} z≤y = toℕ-injective $ begin
  toℕ ((x + y)  z)     ≡⟨ toℕ-homo-∸ (x + y) z 
  (toℕ (x + y)) ℕ.∸ n   ≡⟨ cong (ℕ._∸ n) (toℕ-homo-+ x y) 
  (k ℕ.+ m) ℕ.∸ n       ≡⟨ ℕₚ.+-∸-assoc k n≤m 
  k ℕ.+ (m ℕ.∸ n)       ≡⟨ cong (k ℕ.+_) (sym (toℕ-homo-∸ y z)) 
  k ℕ.+ toℕ (y  z)     ≡⟨ sym (toℕ-homo-+ x (y  z)) 
  toℕ (x + (y  z))     
  where
  open ≡-Reasoning;  k = toℕ x;  m = toℕ y;  n = toℕ z;  n≤m = toℕ-mono-≤ z≤y

x+y∸x+z≡y∸z :  x y z  (x + y)  (x + z)  y  z
x+y∸x+z≡y∸z x y z = begin-equality
  (x + y)  (x + z)    ≡⟨ sym (∸-+-assoc (x + y) x z) 
  ((x + y)  x)  z    ≡⟨ cong (_∸ z) ([x+y]∸x≡y x y) 
  y  z                
  where open ≤-Reasoning

suc[x]∸suc[y] :  x y  suc x  suc y  x  y
suc[x]∸suc[y] x y = begin-equality
  suc x  suc y         ≡⟨ cong₂ _∸_ (suc≗1+ x) (suc≗1+ y) 
  (1ᵇ + x)  (1ᵇ + y)   ≡⟨ x+y∸x+z≡y∸z 1ᵇ x y 
  x  y                 
  where open ≤-Reasoning

∸-mono-≤ : _∸_ Preserves₂ _≤_  _≥_  _≤_
∸-mono-≤ {x} {y} {u} {v} x≤y v≤u = toℕ-cancel-≤ (begin
  toℕ (x  u)      ≡⟨ toℕ-homo-∸ x u 
  toℕ x ℕ.∸ toℕ u  ≤⟨ ℕₚ.∸-mono (toℕ-mono-≤ x≤y) (toℕ-mono-≤ v≤u) 
  toℕ y ℕ.∸ toℕ v  ≡⟨ sym (toℕ-homo-∸ y v) 
  toℕ (y  v)      )
  where open ℕₚ.≤-Reasoning

∸-monoˡ-≤ : (x : ℕᵇ)  (_∸ x) Preserves _≤_  _≤_
∸-monoˡ-≤ x y≤z = ∸-mono-≤ y≤z (≤-refl {x})

∸-monoʳ-≤ : (x : ℕᵇ)  (x ∸_) Preserves _≥_  _≤_
∸-monoʳ-≤ x y≥z = ∸-mono-≤ (≤-refl {x}) y≥z

x∸y≤x :  x y  x  y  x
x∸y≤x x y = begin
  x  y    ≤⟨ ∸-monoʳ-≤ x (0≤x y) 
  x  0ᵇ   ≡⟨ x∸0≡x x 
  x        
  where open ≤-Reasoning

x∸y<x : {x y : ℕᵇ}  x  0ᵇ  y  0ᵇ  x  y < x
x∸y<x {x} {y} x≢0 y≢0 = begin-strict
  x  y              ≡⟨ cong₂ _∸_ (sym (suc-pred x≢0)) (sym (suc-pred y≢0)) 
  suc px  suc py    ≡⟨ suc[x]∸suc[y] px py 
  px  py            ≤⟨ x∸y≤x px py 
  px                 <⟨ pred[x]<x x≢0 
  x                  
  where open ≤-Reasoning;  px = pred x;  py = pred y

------------------------------------------------------------------------
-- Properties of _∸_ and _*_

*-distribˡ-∸ :  _*_ DistributesOverˡ _∸_
*-distribˡ-∸ x y z = toℕ-injective $ begin
  toℕ (x * (y  z))              ≡⟨ toℕ-homo-* x (y  z) 
  k ℕ.* (toℕ (y  z))            ≡⟨ cong (k ℕ.*_) (toℕ-homo-∸ y z) 
  k ℕ.* (m ℕ.∸ n)                ≡⟨ ℕₚ.*-distribˡ-∸ k m n 
  (k ℕ.* m) ℕ.∸ (k ℕ.* n)        ≡⟨ cong₂ ℕ._∸_ (sym (toℕ-homo-* x y)) (sym (toℕ-homo-* x z)) 
  toℕ (x * y) ℕ.∸ toℕ (x * z)    ≡⟨ sym (toℕ-homo-∸ (x * y) (x * z)) 
  toℕ ((x * y)  (x * z))        
  where open ≡-Reasoning;  k = toℕ x;  m = toℕ y;  n = toℕ z

*-distribʳ-∸ : _*_ DistributesOverʳ _∸_
*-distribʳ-∸ = comm∧distrˡ⇒distrʳ *-comm *-distribˡ-∸

*-distrib-∸ : _*_ DistributesOver _∸_
*-distrib-∸ = *-distribˡ-∸ , *-distribʳ-∸