------------------------------------------------------------------------
-- The Agda standard library
--
-- An implementation of merge sort along with proofs of correctness.
------------------------------------------------------------------------

-- Unless you are need a particular property of MergeSort, you should
-- import and use the sorting algorithm from `Data.List.Sort` instead
-- of this file.

{-# OPTIONS --cubical-compatible --safe #-}

open import Data.Bool using (true; false)
open import Data.List.Base
open import Data.List.Properties using (length-partition; ++-assoc; concat-[-])
open import Data.List.Relation.Unary.Linked using ([]; [-])
import Data.List.Relation.Unary.Sorted.TotalOrder.Properties as Sorted
open import Data.List.Relation.Unary.All as All using (All; []; _∷_)
import Data.List.Relation.Unary.All.Properties as All
open import Data.List.Relation.Binary.Permutation.Propositional
import Data.List.Relation.Binary.Permutation.Propositional.Properties as Perm
open import Data.Maybe.Base using (just)
open import Relation.Nullary.Decidable using (does)
open import Data.Nat.Base using (_<_; _>_; z<s; s<s)
open import Data.Nat.Induction
open import Data.Nat.Properties using (m<n⇒m<1+n)
open import Data.Product.Base as Prod using (_,_)
open import Function.Base using (_∘_)
open import Relation.Binary.Bundles using (DecTotalOrder)
open import Relation.Nullary.Negation using (¬_)

module Data.List.Sort.MergeSort
  {a ℓ₁ ℓ₂} (O : DecTotalOrder a ℓ₁ ℓ₂) where

open DecTotalOrder O renaming (Carrier to A)

open import Data.List.Sort.Base totalOrder
open import Data.List.Relation.Unary.Sorted.TotalOrder totalOrder hiding (head)
open import Relation.Binary.Properties.DecTotalOrder O using (≰⇒≥; ≰-respˡ-≈)

open PermutationReasoning

------------------------------------------------------------------------
-- Definition

mergePairs : List (List A)  List (List A)
mergePairs (xs  ys  yss) = merge _≤?_ xs ys  mergePairs yss
mergePairs xss             = xss

private
  length-mergePairs :  xs ys yss  let zss = xs  ys  yss in
                      length (mergePairs zss) < length zss
  length-mergePairs _ _ []              = s<s z<s
  length-mergePairs _ _ (xs  [])       = s<s (s<s z<s)
  length-mergePairs _ _ (xs  ys  yss) = s<s (m<n⇒m<1+n (length-mergePairs xs ys yss))

mergeAll : (xss : List (List A))  Acc _<_ (length xss)  List A
mergeAll []        _               = []
mergeAll (xs  []) _               = xs
mergeAll xss@(xs  ys  yss) (acc rec) = mergeAll
  (mergePairs xss) (rec (length-mergePairs xs ys yss))

sort : List A  List A
sort xs = mergeAll (map [_] xs) (<-wellFounded-fast _)

------------------------------------------------------------------------
-- Permutation property

mergePairs-↭ :  xss  concat (mergePairs xss)  concat xss
mergePairs-↭ []              = ↭-refl
mergePairs-↭ (xs  [])       = ↭-refl
mergePairs-↭ (xs  ys  xss) = begin
  merge _ xs ys ++ concat (mergePairs xss) ↭⟨ Perm.++⁺ (Perm.merge-↭ _ xs ys) (mergePairs-↭ xss) 
  (xs ++ ys)    ++ concat xss              ≡⟨ ++-assoc xs ys (concat xss) 
  xs ++ ys      ++ concat xss              

mergeAll-↭ :  xss (rec : Acc _<_ (length xss))  mergeAll xss rec  concat xss
mergeAll-↭ []              _ = ↭-refl
mergeAll-↭ (xs  [])       _ = ↭-sym (Perm.++-identityʳ xs)
mergeAll-↭ (xs  ys  xss) (acc rec) = begin
  mergeAll (mergePairs (xs  ys  xss)) _ ↭⟨ mergeAll-↭ (mergePairs (xs  ys  xss)) _ 
  concat   (mergePairs (xs  ys  xss))   ↭⟨ mergePairs-↭ (xs  ys  xss) 
  concat   (xs  ys  xss)                

sort-↭ :  xs  sort xs  xs
sort-↭ xs = begin
  mergeAll (map [_] xs) _ ↭⟨ mergeAll-↭ (map [_] xs) _ 
  concat (map [_] xs)     ≡⟨ concat-[-] xs 
  xs                      

------------------------------------------------------------------------
-- Sorted property

mergePairs-↗ :  {xss}  All Sorted xss  All Sorted (mergePairs xss)
mergePairs-↗ []                 = []
mergePairs-↗ (xs↗  [])         = xs↗  []
mergePairs-↗ (xs↗  ys↗  xss↗) = Sorted.merge⁺ O xs↗ ys↗  mergePairs-↗ xss↗

mergeAll-↗ :  {xss} (rec : Acc _<_ (length xss)) 
             All Sorted xss  Sorted (mergeAll xss rec)
mergeAll-↗ rec       []                 = []
mergeAll-↗ rec       (xs↗  [])         = xs↗
mergeAll-↗ (acc rec) (xs↗  ys↗  xss↗) = mergeAll-↗ _ (mergePairs-↗ (xs↗  ys↗  xss↗))

sort-↗ :  xs  Sorted (sort xs)
sort-↗ xs = mergeAll-↗ _ (All.map⁺ (All.universal  _  [-]) xs))

------------------------------------------------------------------------
-- Algorithm

mergeSort : SortingAlgorithm
mergeSort = record
  { sort   = sort
  ; sort-↭ = sort-↭
  ; sort-↗ = sort-↗
  }