{-# OPTIONS --cubical-compatible --safe #-}
module Data.List.Relation.Unary.AllPairs.Properties where
open import Data.List.Base hiding (any)
open import Data.List.Relation.Unary.All as All using (All; []; _∷_)
import Data.List.Relation.Unary.All.Properties as All
open import Data.List.Relation.Unary.AllPairs as AllPairs using (AllPairs; []; _∷_)
open import Data.Bool.Base using (true; false)
open import Data.Fin.Base using (Fin)
open import Data.Fin.Properties using (suc-injective)
open import Data.Nat.Base using (zero; suc; _<_; z≤n; s≤s)
open import Data.Nat.Properties using (≤-refl; m<n⇒m<1+n)
open import Function.Base using (_∘_; flip)
open import Level using (Level)
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.Bundles using (DecSetoid)
open import Relation.Binary.PropositionalEquality.Core using (_≢_)
open import Relation.Unary using (Pred; Decidable)
open import Relation.Nullary.Decidable using (does)
private
variable
a b c p ℓ : Level
A : Set a
B : Set b
C : Set c
module _ {R : Rel A ℓ} {f : B → A} where
map⁺ : ∀ {xs} → AllPairs (λ x y → R (f x) (f y)) xs →
AllPairs R (map f xs)
map⁺ [] = []
map⁺ (x∉xs ∷ xs!) = All.map⁺ x∉xs ∷ map⁺ xs!
module _ {R : Rel A ℓ} where
++⁺ : ∀ {xs ys} → AllPairs R xs → AllPairs R ys →
All (λ x → All (R x) ys) xs → AllPairs R (xs ++ ys)
++⁺ [] Rys _ = Rys
++⁺ (px ∷ Rxs) Rys (Rxys ∷ Rxsys) = All.++⁺ px Rxys ∷ ++⁺ Rxs Rys Rxsys
module _ {R : Rel A ℓ} where
concat⁺ : ∀ {xss} → All (AllPairs R) xss →
AllPairs (λ xs ys → All (λ x → All (R x) ys) xs) xss →
AllPairs R (concat xss)
concat⁺ [] [] = []
concat⁺ (pxs ∷ pxss) (Rxsxss ∷ Rxss) = ++⁺ pxs (concat⁺ pxss Rxss)
(All.map All.concat⁺ (All.All-swap Rxsxss))
module _ {R : Rel A ℓ} where
take⁺ : ∀ {xs} n → AllPairs R xs → AllPairs R (take n xs)
take⁺ zero pxs = []
take⁺ (suc n) [] = []
take⁺ (suc n) (px ∷ pxs) = All.take⁺ n px ∷ take⁺ n pxs
drop⁺ : ∀ {xs} n → AllPairs R xs → AllPairs R (drop n xs)
drop⁺ zero pxs = pxs
drop⁺ (suc n) [] = []
drop⁺ (suc n) (_ ∷ pxs) = drop⁺ n pxs
module _ {R : Rel A ℓ} where
applyUpTo⁺₁ : ∀ f n → (∀ {i j} → i < j → j < n → R (f i) (f j)) → AllPairs R (applyUpTo f n)
applyUpTo⁺₁ f zero Rf = []
applyUpTo⁺₁ f (suc n) Rf =
All.applyUpTo⁺₁ _ n (Rf (s≤s z≤n) ∘ s≤s) ∷
applyUpTo⁺₁ _ n (λ i≤j j<n → Rf (s≤s i≤j) (s≤s j<n))
applyUpTo⁺₂ : ∀ f n → (∀ i j → R (f i) (f j)) → AllPairs R (applyUpTo f n)
applyUpTo⁺₂ f n Rf = applyUpTo⁺₁ f n (λ _ _ → Rf _ _)
module _ {R : Rel A ℓ} where
applyDownFrom⁺₁ : ∀ f n → (∀ {i j} → j < i → i < n → R (f i) (f j)) →
AllPairs R (applyDownFrom f n)
applyDownFrom⁺₁ f zero Rf = []
applyDownFrom⁺₁ f (suc n) Rf =
All.applyDownFrom⁺₁ _ n (flip Rf ≤-refl) ∷
applyDownFrom⁺₁ f n (λ j<i i<n → Rf j<i (m<n⇒m<1+n i<n))
applyDownFrom⁺₂ : ∀ f n → (∀ i j → R (f i) (f j)) → AllPairs R (applyDownFrom f n)
applyDownFrom⁺₂ f n Rf = applyDownFrom⁺₁ f n (λ _ _ → Rf _ _)
module _ {R : Rel A ℓ} where
tabulate⁺ : ∀ {n} {f : Fin n → A} → (∀ {i j} → i ≢ j → R (f i) (f j)) →
AllPairs R (tabulate f)
tabulate⁺ {zero} fᵢ~fⱼ = []
tabulate⁺ {suc n} fᵢ~fⱼ =
All.tabulate⁺ (λ j → fᵢ~fⱼ λ()) ∷
tabulate⁺ (fᵢ~fⱼ ∘ (_∘ suc-injective))
module _ {R : Rel A ℓ} {P : Pred A p} (P? : Decidable P) where
filter⁺ : ∀ {xs} → AllPairs R xs → AllPairs R (filter P? xs)
filter⁺ {_} [] = []
filter⁺ {x ∷ xs} (x∉xs ∷ xs!) with does (P? x)
... | false = filter⁺ xs!
... | true = All.filter⁺ P? x∉xs ∷ filter⁺ xs!