{-# OPTIONS --cubical-compatible --safe #-}
open import Relation.Binary.Bundles using (Setoid)
module Data.List.Relation.Ternary.Appending.Setoid.Properties {c l} (S : Setoid c l) where
open import Data.List.Base as List using (List; [])
import Data.List.Properties as Listₚ
open import Data.List.Relation.Binary.Pointwise.Base using (Pointwise; [])
import Data.List.Relation.Ternary.Appending.Properties as Appendingₚ
open import Data.Product.Base using (_,_)
open import Relation.Binary.PropositionalEquality.Core using (refl)
open import Data.List.Relation.Ternary.Appending.Setoid S
module S = Setoid S; open S renaming (Carrier to A) using (_≈_)
private
variable
as bs cs : List A
open Appendingₚ public
hiding (respʳ-≋; respˡ-≋)
[]++⁻¹ : Appending [] bs cs → Pointwise _≈_ bs cs
[]++⁻¹ ([]++ rs) = rs
++[]⁻¹ : Appending as [] cs → Pointwise _≈_ as cs
++[]⁻¹ {as} {cs} ls with break ls
... | cs₁ , cs₂ , refl , pw , []
rewrite Listₚ.++-identityʳ cs₁
= pw
respʳ-≋ : ∀ {cs′} → Appending as bs cs → Pointwise _≈_ cs cs′ →
Appending as bs cs′
respʳ-≋ = Appendingₚ.respʳ-≋ S.trans S.trans
respˡ-≋ : ∀ {as′ bs′} → Pointwise _≈_ as′ as → Pointwise _≈_ bs′ bs →
Appending as bs cs → Appending as′ bs′ cs
respˡ-≋ = Appendingₚ.respˡ-≋ S.trans S.trans