{-# OPTIONS --cubical-compatible --safe #-}
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.Bundles using (Setoid)
module Data.List.Fresh.Membership.Setoid.Properties {c ℓ} (S : Setoid c ℓ) where
open import Level using (Level; _⊔_)
open import Data.Empty
open import Data.Nat.Base
open import Data.Nat.Properties
open import Data.Product.Base using (∃; _×_; _,_)
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂; fromInj₂)
open import Function.Base using (id; _∘′_; _$_)
open import Relation.Nullary
open import Relation.Unary as U using (Pred)
import Relation.Binary.Definitions as B
import Relation.Binary.PropositionalEquality.Core as P
open import Relation.Nary
open import Data.List.Fresh
open import Data.List.Fresh.Properties
open import Data.List.Fresh.Membership.Setoid S
open import Data.List.Fresh.Relation.Unary.Any using (Any; here; there; _─_)
import Data.List.Fresh.Relation.Unary.Any.Properties as Anyₚ
import Data.List.Fresh.Relation.Unary.All.Properties as Allₚ
open Setoid S renaming (Carrier to A)
private
variable
p r : Level
module _ {R : Rel A r} where
≈-subst-∈ : ∀ {x y} {xs : List# A R} → x ≈ y → x ∈ xs → y ∈ xs
≈-subst-∈ x≈y (here x≈x′) = here (trans (sym x≈y) x≈x′)
≈-subst-∈ x≈y (there x∈xs) = there (≈-subst-∈ x≈y x∈xs)
module _ {R : Rel A r} (R⇒≉ : ∀[ R ⇒ _≉_ ]) where
fresh⇒∉ : ∀ {x} {xs : List# A R} → x # xs → x ∉ xs
fresh⇒∉ (r , _) (here x≈y) = R⇒≉ r x≈y
fresh⇒∉ (_ , x#xs) (there x∈xs) = fresh⇒∉ x#xs x∈xs
module _ {R : Rel A r} where
distinct : ∀ {x y} {xs : List# A R} → x ∈ xs → y ∉ xs → x ≉ y
distinct x∈xs y∉xs x≈y = y∉xs (≈-subst-∈ x≈y x∈xs)
module _ {R : Rel A r} where
remove-inv : ∀ {x y} {xs : List# A R} (x∈xs : x ∈ xs) →
y ∈ xs → x ≈ y ⊎ y ∈ (xs ─ x∈xs)
remove-inv (here x≈z) (here y≈z) = inj₁ (trans x≈z (sym y≈z))
remove-inv (here _) (there y∈xs) = inj₂ y∈xs
remove-inv (there _) (here y≈z) = inj₂ (here y≈z)
remove-inv (there x∈xs) (there y∈xs) = Sum.map₂ there (remove-inv x∈xs y∈xs)
∈-remove : ∀ {x y} {xs : List# A R} (x∈xs : x ∈ xs) → y ∈ xs → x ≉ y → y ∈ (xs ─ x∈xs)
∈-remove x∈xs y∈xs x≉y = fromInj₂ (⊥-elim ∘′ x≉y) (remove-inv x∈xs y∈xs)
module _ {R : Rel A r} (R⇒≉ : ∀[ R ⇒ _≉_ ]) (≉⇒R : ∀[ _≉_ ⇒ R ]) where
private
R≈ : R B.Respectsˡ _≈_
R≈ x≈y Rxz = ≉⇒R (R⇒≉ Rxz ∘′ trans x≈y)
fresh-remove : ∀ {x} {xs : List# A R} (x∈xs : x ∈ xs) → x # (xs ─ x∈xs)
fresh-remove {xs = cons x xs pr} (here x≈y) = fresh-respectsˡ R≈ (sym x≈y) pr
fresh-remove {xs = cons x xs pr} (there x∈xs) =
≉⇒R (distinct x∈xs (fresh⇒∉ R⇒≉ pr)) , fresh-remove x∈xs
∉-remove : ∀ {x} {xs : List# A R} (x∈xs : x ∈ xs) → x ∉ (xs ─ x∈xs)
∉-remove x∈xs = fresh⇒∉ R⇒≉ (fresh-remove x∈xs)
module _ {R : Rel A r} (R⇒≉ : ∀[ R ⇒ _≉_ ]) where
injection : ∀ {xs ys : List# A R} (inj : ∀ {x} → x ∈ xs → x ∈ ys) →
length xs ≤ length ys
injection {[]} {ys} inj = z≤n
injection {xxs@(cons x xs pr)} {ys} inj = begin
length xxs ≤⟨ s≤s (injection step) ⟩
suc (length (ys ─ x∈ys)) ≡⟨ P.sym (Anyₚ.length-remove x∈ys) ⟩
length ys ∎
where
open ≤-Reasoning
x∉xs : x ∉ xs
x∉xs = fresh⇒∉ R⇒≉ pr
x∈ys : x ∈ ys
x∈ys = inj (here refl)
step : ∀ {y} → y ∈ xs → y ∈ (ys ─ x∈ys)
step {y} y∈xs = ∈-remove x∈ys (inj (there y∈xs)) (distinct y∈xs x∉xs ∘′ sym)
strict-injection : ∀ {xs ys : List# A R} (inj : ∀ {x} → x ∈ xs → x ∈ ys) →
(∃ λ x → x ∈ ys × x ∉ xs) → length xs < length ys
strict-injection {xs} {ys} inj (x , x∈ys , x∉xs) = begin
suc (length xs) ≤⟨ s≤s (injection step) ⟩
suc (length (ys ─ x∈ys)) ≡⟨ P.sym (Anyₚ.length-remove x∈ys) ⟩
length ys ∎
where
open ≤-Reasoning
step : ∀ {y} → y ∈ xs → y ∈ (ys ─ x∈ys)
step {y} y∈xs = fromInj₂ (λ x≈y → ⊥-elim (x∉xs (≈-subst-∈ (sym x≈y) y∈xs)))
$ remove-inv x∈ys (inj y∈xs)
module _ {R : Rel A r} (R⇒≉ : ∀[ R ⇒ _≉_ ]) (≈-irrelevant : B.Irrelevant _≈_) where
∈-irrelevant : ∀ {x} {xs : List# A R} → Irrelevant (x ∈ xs)
∈-irrelevant (here x≈y₁) (here x≈y₂) = P.cong here (≈-irrelevant x≈y₁ x≈y₂)
∈-irrelevant (there x∈xs₁) (there x∈xs₂) = P.cong there (∈-irrelevant x∈xs₁ x∈xs₂)
∈-irrelevant {xs = cons x xs pr} (here x≈y) (there x∈xs₂) =
⊥-elim (distinct x∈xs₂ (fresh⇒∉ R⇒≉ pr) x≈y)
∈-irrelevant {xs = cons x xs pr} (there x∈xs₁) (here x≈y) =
⊥-elim (distinct x∈xs₁ (fresh⇒∉ R⇒≉ pr) x≈y)