------------------------------------------------------------------------
-- The Agda standard library
--
-- Finding the maximum/minimum values in a list, specialised for Nat
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

-- This specialised module is needed as `m < n` for Nat is not
-- implemented as `m ≤ n × m ≢ n`.

module Data.List.Extrema.Nat where

open import Data.Nat.Base using (; _≤_; _<_)
open import Data.Nat.Properties as ℕₚ using (≤∧≢⇒<; <⇒≤; <⇒≢)
open import Data.Sum.Base as Sum using (_⊎_)
open import Data.List.Base using (List)
import Data.List.Extrema
open import Data.List.Relation.Unary.Any as Any using (Any)
open import Data.List.Relation.Unary.All as All using (All)
open import Data.Product.Base using (_×_; _,_; uncurry′)
open import Level using (Level)
open import Relation.Binary.PropositionalEquality.Core using (_≢_)

private
  variable
    a : Level
    A : Set a

  <⇒<× :  {x y}  x < y  x  y × x  y
  <⇒<× x<y = <⇒≤ x<y , <⇒≢ x<y

  <×⇒< :  {x y}  x  y × x  y  x < y
  <×⇒< (x≤y , x≢y) = ≤∧≢⇒< x≤y x≢y

  module Extrema = Data.List.Extrema ℕₚ.≤-totalOrder

------------------------------------------------------------------------
-- Re-export the contents of Extrema

open Extrema public
  hiding
  ( f[argmin]<v⁺; v<f[argmin]⁺; argmin[xs]<argmin[ys]⁺
  ; f[argmax]<v⁺; v<f[argmax]⁺; argmax[xs]<argmax[ys]⁺
  ; min<v⁺; v<min⁺; min[xs]<min[ys]⁺
  ; max<v⁺; v<max⁺; max[xs]<max[ys]⁺
  )

------------------------------------------------------------------------
-- New versions of the proofs involving _<_

-- Argmin

f[argmin]<v⁺ :  {f : A  } {v}  xs 
              (f  < v)  (Any  x  f x < v) xs) 
              f (argmin f  xs) < v
f[argmin]<v⁺  xs arg =
  <×⇒< (Extrema.f[argmin]<v⁺  xs (Sum.map <⇒<× (Any.map <⇒<×) arg))

v<f[argmin]⁺ :  {f : A  } {v  xs} 
              v < f   All  x  v < f x) xs 
              v < f (argmin f  xs)
v<f[argmin]⁺ {v} v<f⊤ v<fxs =
  <×⇒< (Extrema.v<f[argmin]⁺ (<⇒<× v<f⊤) (All.map <⇒<× v<fxs))

argmin[xs]<argmin[ys]⁺ :  {f g : A  } ⊤₁ {⊤₂} xs {ys} 
                        (f ⊤₁ < g ⊤₂)  Any  x  f x < g ⊤₂) xs 
                        All  y  (f ⊤₁ < g y)  Any  x  f x < g y) xs) ys 
                        f (argmin f ⊤₁ xs) < g (argmin g ⊤₂ ys)
argmin[xs]<argmin[ys]⁺ ⊤₁ xs xs<⊤₂ xs<ys =
  v<f[argmin]⁺ (f[argmin]<v⁺ ⊤₁ _ xs<⊤₂) (All.map (f[argmin]<v⁺ ⊤₁ xs) xs<ys)

-- Argmax

v<f[argmax]⁺ :  {f : A  } {v}  xs  (v < f )  (Any  x  v < f x) xs) 
              v < f (argmax f  xs)
v<f[argmax]⁺  xs leq = <×⇒< (Extrema.v<f[argmax]⁺  xs (Sum.map <⇒<× (Any.map <⇒<×) leq))

f[argmax]<v⁺ :  {f : A  } {v  xs}  f  < v  All  x  f x < v) xs 
              f (argmax f  xs) < v
f[argmax]<v⁺ ⊥<v xs<v = <×⇒< (Extrema.f[argmax]<v⁺ (<⇒<× ⊥<v) (All.map <⇒<× xs<v))

argmax[xs]<argmax[ys]⁺ :  {f g : A  } {⊥₁} ⊥₂ {xs} ys 
                         (f ⊥₁ < g ⊥₂)  Any  y  f ⊥₁ < g y) ys 
                         All  x  (f x < g ⊥₂)  Any  y  f x < g y) ys) xs 
                         f (argmax f ⊥₁ xs) < g (argmax g ⊥₂ ys)
argmax[xs]<argmax[ys]⁺ ⊥₂ ys ⊥₁<ys xs<ys =
  f[argmax]<v⁺ (v<f[argmax]⁺ ⊥₂ _ ⊥₁<ys) (All.map (v<f[argmax]⁺ ⊥₂ ys) xs<ys)

-- Min

min<v⁺ :  {v}  xs   < v  Any (_< v) xs  min  xs < v
min<v⁺ = f[argmin]<v⁺

v<min⁺ :  {v  xs}  v <   All (v <_) xs  v < min  xs
v<min⁺ = v<f[argmin]⁺

min[xs]<min[ys]⁺ :  ⊤₁ {⊤₂} xs {ys}  (⊤₁ < ⊤₂)  Any (_< ⊤₂) xs 
                   All  y  (⊤₁ < y)  Any  x  x < y) xs) ys 
                   min ⊤₁ xs < min ⊤₂ ys
min[xs]<min[ys]⁺ = argmin[xs]<argmin[ys]⁺

-- Max

max<v⁺ :  {v  xs}   < v  All (_< v) xs  max  xs < v
max<v⁺ = f[argmax]<v⁺

v<max⁺ :  {v}  xs  v <   Any (v <_) xs  v < max  xs
v<max⁺ = v<f[argmax]⁺

max[xs]<max[ys]⁺ :  {⊥₁} ⊥₂ {xs} ys  ⊥₁ < ⊥₂  Any (⊥₁ <_) ys 
                   All  x  x < ⊥₂  Any (x <_) ys) xs 
                   max ⊥₁ xs < max ⊥₂ ys
max[xs]<max[ys]⁺ = argmax[xs]<argmax[ys]⁺