------------------------------------------------------------------------
-- The Agda standard library
--
-- Least Common Multiple for integers
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.Integer.LCM where

open import Data.Integer.Base
open import Data.Integer.Divisibility
open import Data.Integer.GCD
open import Data.Nat.Base using ()
import Data.Nat.LCM as 
open import Relation.Binary.PropositionalEquality

------------------------------------------------------------------------
-- Definition
------------------------------------------------------------------------

lcm :     
lcm i j = + ℕ.lcm  i   j 

------------------------------------------------------------------------
-- Properties
------------------------------------------------------------------------

i∣lcm[i,j] :  i j  i  lcm i j
i∣lcm[i,j] i j = ℕ.m∣lcm[m,n]  i   j 

j∣lcm[i,j] :  i j  j  lcm i j
j∣lcm[i,j] i j = ℕ.n∣lcm[m,n]  i   j 

lcm-least :  {i j c}  i  c  j  c  lcm i j  c
lcm-least c∣i c∣j = ℕ.lcm-least c∣i c∣j

lcm[0,i]≡0 :  i  lcm 0ℤ i  0ℤ
lcm[0,i]≡0 i = cong (+_) (ℕ.lcm[0,n]≡0  i )

lcm[i,0]≡0 :  i  lcm i 0ℤ  0ℤ
lcm[i,0]≡0 i = cong (+_) (ℕ.lcm[n,0]≡0  i )

lcm-comm :  i j  lcm i j  lcm j i
lcm-comm i j = cong (+_) (ℕ.lcm-comm  i   j )