------------------------------------------------------------------------
-- The Agda standard library
--
-- Alternative definition of divisibility without using modulus.
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.Integer.Divisibility.Signed where

open import Function.Base using (_⟨_⟩_; _$_; _$′_; _∘_; _∘′_)
open import Data.Integer.Base
open import Data.Integer.Properties
open import Data.Integer.Divisibility as Unsigned
  using (divides)
  renaming (_∣_ to _∣ᵤ_)
import Data.Nat.Base as 
import Data.Nat.Divisibility as 
import Data.Nat.Coprimality as 
import Data.Nat.Properties as 
import Data.Sign as S
import Data.Sign.Properties as SProp
open import Level
open import Relation.Binary.Core using (_⇒_; _Preserves_⟶_)
open import Relation.Binary.Bundles using (Preorder)
open import Relation.Binary.Structures using (IsPreorder)
open import Relation.Binary.Definitions
  using (Reflexive; Transitive; Decidable)
open import Relation.Binary.PropositionalEquality
import Relation.Binary.Reasoning.Preorder as PreorderReasoning
open import Relation.Nullary.Decidable using (yes; no)
import Relation.Nullary.Decidable as DEC
open import Relation.Binary.Reasoning.Syntax

------------------------------------------------------------------------
-- Type

infix 4 _∣_

record _∣_ (k z : ) : Set where
  constructor divides
  field quotient : 
        equality : z  quotient * k
open _∣_ using (quotient) public

------------------------------------------------------------------------
-- Conversion between signed and unsigned divisibility

∣ᵤ⇒∣ :  {k i}  k ∣ᵤ i  k  i
∣ᵤ⇒∣ {k} {i} (divides 0           eq) = divides (+ 0) (∣i∣≡0⇒i≡0 eq)
∣ᵤ⇒∣ {k} {i} (divides q@(ℕ.suc _) eq) with k  +0
... | yes refl = divides +0 (∣i∣≡0⇒i≡0 (trans eq (ℕ.*-zeroʳ q)))
... | no  neq  = divides (sign i S.* sign k  q) (◃-cong sign-eq abs-eq)
  where
  ikq = sign i S.* sign k  q

  *-nonZero :  m n .{{_ : ℕ.NonZero m}} .{{_ : ℕ.NonZero n}}  ℕ.NonZero (m ℕ.* n)
  *-nonZero (ℕ.suc _) (ℕ.suc _) = _

  ◃-nonZero :  s n .{{_ : ℕ.NonZero n}}  NonZero (s  n)
  ◃-nonZero S.- (ℕ.suc _) = _
  ◃-nonZero S.+ (ℕ.suc _) = _

  ikq≢0 : NonZero ikq
  ikq≢0 = ◃-nonZero (sign i S.* sign k) q

  instance
    ikq*∣k∣≢0 : ℕ.NonZero ( ikq  ℕ.*  k )
    ikq*∣k∣≢0 = *-nonZero  ikq   k  {{ikq≢0}} {{≢-nonZero neq}}

  sign-eq : sign i  sign (ikq * k)
  sign-eq = sym $ begin
    sign (ikq * k)                  ≡⟨ sign-◃ (sign ikq S.* sign k) ( ikq  ℕ.*  k ) 
    sign ikq S.* sign k             ≡⟨ cong (S._* sign k) (sign-◃ (sign i S.* sign k) q) 
    (sign i S.* sign k) S.* sign k  ≡⟨ SProp.*-assoc (sign i) (sign k) (sign k) 
    sign i S.* (sign k S.* sign k)  ≡⟨ cong (sign i S.*_) (SProp.s*s≡+ (sign k)) 
    sign i S.* S.+                  ≡⟨ SProp.*-identityʳ (sign i) 
    sign i                          
    where open ≡-Reasoning

  abs-eq :  i    ikq * k 
  abs-eq = sym $ begin
     ikq * k         ≡⟨ ∣i*j∣≡∣i∣*∣j∣ ikq k 
     ikq  ℕ.*  k   ≡⟨ cong (ℕ._*  k ) (abs-◃ (sign i S.* sign k) q) 
    q ℕ.*  k         ≡⟨ sym eq 
     i               
    where open ≡-Reasoning

∣⇒∣ᵤ :  {k i}  k  i  k ∣ᵤ i
∣⇒∣ᵤ {k} {i} (divides q eq) = divides  q  $′ begin
   i            ≡⟨ cong ∣_∣ eq 
   q * k        ≡⟨ abs-* q k 
   q  ℕ.*  k  
  where open ≡-Reasoning

------------------------------------------------------------------------
-- _∣_ is a preorder

∣-refl : Reflexive _∣_
∣-refl = ∣ᵤ⇒∣ ℕ.∣-refl

∣-reflexive : _≡_  _∣_
∣-reflexive refl = ∣-refl

∣-trans : Transitive _∣_
∣-trans i∣j j∣k = ∣ᵤ⇒∣ (ℕ.∣-trans (∣⇒∣ᵤ i∣j) (∣⇒∣ᵤ j∣k))

∣-isPreorder : IsPreorder _≡_ _∣_
∣-isPreorder = record
  { isEquivalence = isEquivalence
  ; reflexive     = ∣-reflexive
  ; trans         = ∣-trans
  }

∣-preorder : Preorder _ _ _
∣-preorder = record { isPreorder = ∣-isPreorder }

------------------------------------------------------------------------
-- Divisibility reasoning

module ∣-Reasoning where
  private module Base = PreorderReasoning ∣-preorder

  open Base public
    hiding (step-≲; step-∼; step-≈; step-≈˘)
    renaming (≲-go to ∣-go)

  open ∣-syntax _IsRelatedTo_ _IsRelatedTo_ ∣-go public

------------------------------------------------------------------------
-- Other properties of _∣_

infix 4 _∣?_

_∣?_ : Decidable _∣_
k ∣? m = DEC.map′ ∣ᵤ⇒∣ ∣⇒∣ᵤ ( k  ℕ.∣?  m )

0∣⇒≡0 :  {m}  0ℤ  m  m  0ℤ
0∣⇒≡0 0|m = ∣i∣≡0⇒i≡0 (ℕ.0∣⇒≡0 (∣⇒∣ᵤ 0|m))

m∣∣m∣ :  {m}  m  (+  m )
m∣∣m∣ = ∣ᵤ⇒∣ ℕ.∣-refl

∣m∣∣m :  {m}  (+  m )  m
∣m∣∣m = ∣ᵤ⇒∣ ℕ.∣-refl

∣m∣n⇒∣m+n :  {i m n}  i  m  i  n  i  m + n
∣m∣n⇒∣m+n (divides q refl) (divides p refl) =
  divides (q + p) (sym (*-distribʳ-+ _ q p))

∣m⇒∣-m :  {i m}  i  m  i  - m
∣m⇒∣-m {i} {m} i∣m = ∣ᵤ⇒∣ $′ begin
   i    ∣⟨ ∣⇒∣ᵤ i∣m 
   m    ≡⟨ sym (∣-i∣≡∣i∣ m) 
   - m  
  where open ℕ.∣-Reasoning

∣m∣n⇒∣m-n :  {i m n}  i  m  i  n  i  m - n
∣m∣n⇒∣m-n i∣m i∣n = ∣m∣n⇒∣m+n i∣m (∣m⇒∣-m i∣n)

∣m+n∣m⇒∣n :  {i m n}  i  m + n  i  m  i  n
∣m+n∣m⇒∣n {i} {m} {n} i∣m+n i∣m = begin
  i             ∣⟨ ∣m∣n⇒∣m-n i∣m+n i∣m 
  m + n - m     ≡⟨ +-comm (m + n) (- m) 
  - m + (m + n) ≡⟨ sym (+-assoc (- m) m n) 
  - m + m + n   ≡⟨ cong (_+ n) (+-inverseˡ m) 
  + 0 + n       ≡⟨ +-identityˡ n 
  n             
  where open ∣-Reasoning

∣m+n∣n⇒∣m :  {i m n}  i  m + n  i  n  i  m
∣m+n∣n⇒∣m {m = m} {n} i|m+n i|n rewrite +-comm m n = ∣m+n∣m⇒∣n i|m+n i|n

∣n⇒∣m*n :  {i} m {n}  i  n  i  m * n
∣n⇒∣m*n {i} m {n} (divides q eq) = divides (m * q) $′ begin
  m * n       ≡⟨ cong (m *_) eq 
  m * (q * i) ≡⟨ sym (*-assoc m q i) 
  m * q * i   
  where open ≡-Reasoning

∣m⇒∣m*n :  {i m} n  i  m  i  m * n
∣m⇒∣m*n {m = m} n i|m rewrite *-comm m n = ∣n⇒∣m*n n i|m

*-monoʳ-∣ :  k  (k *_) Preserves _∣_  _∣_
*-monoʳ-∣ k = ∣ᵤ⇒∣  Unsigned.*-monoʳ-∣ k  ∣⇒∣ᵤ

*-monoˡ-∣ :  k  (_* k) Preserves _∣_  _∣_
*-monoˡ-∣ k {i} {j} = ∣ᵤ⇒∣  Unsigned.*-monoˡ-∣ k {i} {j}  ∣⇒∣ᵤ

*-cancelˡ-∣ :  k {i j} .{{_ : NonZero k}}  k * i  k * j  i  j
*-cancelˡ-∣ k = ∣ᵤ⇒∣  Unsigned.*-cancelˡ-∣ k  ∣⇒∣ᵤ

*-cancelʳ-∣ :  k {i j} .{{_ : NonZero k}}  i * k  j * k  i  j
*-cancelʳ-∣ k {i} {j} = ∣ᵤ⇒∣ ∘′ Unsigned.*-cancelʳ-∣ k {i} {j} ∘′ ∣⇒∣ᵤ