------------------------------------------------------------------------
-- The Agda standard library
--
-- Indexed container combinators
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.Container.Indexed.Combinator where

open import Axiom.Extensionality.Propositional using (Extensionality)
open import Data.Container.Indexed
open import Data.Empty.Polymorphic using (; ⊥-elim)
open import Data.Unit.Polymorphic.Base using ()
open import Data.Product.Base as Prod hiding (Σ) renaming (_×_ to _⟨×⟩_)
open import Data.Sum.Base renaming (_⊎_ to _⟨⊎⟩_)
open import Data.Sum.Relation.Unary.All as All using (All)
open import Function.Base as F hiding (id; const) renaming (_∘_ to _⟨∘⟩_)
open import Function.Bundles using (mk↔ₛ′)
open import Function.Indexed.Bundles using (_↔ᵢ_)
open import Level
open import Relation.Unary using (Pred; _⊆_; _∪_; _∩_; ; )
  renaming (_⟨×⟩_ to _⟪×⟫_; _⟨⊙⟩_ to _⟪⊙⟫_; _⟨⊎⟩_ to _⟪⊎⟫_)
open import Relation.Binary.PropositionalEquality as P
  using (_≗_; refl)

private
  variable
     ℓ₁ ℓ₂ i j k o c c₁ c₂ r r₁ r₂ x z : Level
    I J K O X Z : Set _

------------------------------------------------------------------------
-- Combinators


-- Identity.

id : Container O O c r
id = F.const   F.const  /  {o} _ _  o)

-- Constant.

const : Pred O c  Container I O c r
const X = X  F.const  / F.const ⊥-elim

-- Composition.

infixr 9 _∘_

_∘_ : Container J K c₁ r₁  Container I J c₂ r₂  Container I K _ _
C₁  C₂ = C  R / n
  where
  C :  k  Set _
  C =  C₁  (Command C₂)

  R :  {k}   C₁  (Command C₂) k  Set _
  R (c , k) =  C₁ {X = Command C₂} (Response C₂ ⟨∘⟩ proj₂) (_ , c , k)

  n :  {k} (c :  C₁  (Command C₂) k)  R c  _
  n (_ , f) (r₁ , r₂) = next C₂ (f r₁) r₂

-- Duality.

_^⊥ : Container I O c r  Container I O (c  r) c
(C ^⊥) .Command  o     = (c : C .Command o)  C .Response c
(C ^⊥) .Response {o} _ = C .Command o
(C ^⊥) .next     f c   = C .next c (f c)

-- Strength.

infixl 3 _⋊_

_⋊_ : Container I O c r  (Z : Set z)  Container (I ⟨×⟩ Z) (O ⟨×⟩ Z) c r
(C  Z) .Command  (o , z)     = C .Command o
(C  Z) .Response             = C .Response
(C  Z) .next     {o , z} c r = C .next c r , z

infixr 3 _⋉_

_⋉_ : (Z : Set z)  Container I O c r  Container (Z ⟨×⟩ I) (Z ⟨×⟩ O) c r
(Z  C) .Command  (z , o)     = C .Command o
(Z  C) .Response             = C .Response
(Z  C) .next     {z , o} c r = z , C .next c r



-- Product. (Note that, up to isomorphism, and ignoring universe level
-- issues, this is a special case of indexed product.)

infixr 2 _×_

_×_ : Container I O c₁ r₁  Container I O c₂ r₂  Container I O _ _
(C₁  R₁ / n₁) × (C₂  R₂ / n₂) = record
  { Command  = C₁  C₂
  ; Response = R₁ ⟪⊙⟫ R₂
  ; next     = λ { (c₁ , c₂)  [ n₁ c₁ , n₂ c₂ ] }
  }

-- Indexed product.

Π : (X  Container I O c r)  Container I O _ _
Π {X = X} C = record
  { Command  =  X (Command ⟨∘⟩ C)
  ; Response = ⋃[ x  X ] λ c  Response (C x) (c x)
  ; next     = λ { c (x , r)  next (C x) (c x) r }
  }

-- Sum. (Note that, up to isomorphism, and ignoring universe level
-- issues, this is a special case of indexed sum.)

infixr 1  _⊎_ _⊎′_

_⊎_ : Container I O c₁ r₁  Container I O c₂ r₂  Container I O _ _
(C₁  C₂) .Command  = C₁ .Command  C₂ .Command
(C₁  C₂) .Response = All (C₁ .Response) (C₂ .Response)
(C₁  C₂) .next     = All.[ C₁ .next , C₂ .next ]

-- A simplified version for responses at the same level r:

_⊎′_ : Container I O c₁ r  Container I O c₂ r  Container I O _ r
(C₁  R₁ / n₁) ⊎′ (C₂  R₂ / n₂) = record
  { Command  = C₁  C₂
  ; Response = [ R₁ , R₂ ]
  ; next     = [ n₁ , n₂ ]
  }

-- Indexed sum.

Σ : (X  Container I O c r)  Container I O _ r
Σ {X = X} C = record
  { Command  =  X (Command ⟨∘⟩ C)
  ; Response = λ { (x , c)  Response (C x) c }
  ; next     = λ { (x , c) r  next (C x) c r }
  }

-- Constant exponentiation. (Note that this is a special case of
-- indexed product.)

infix 0 const[_]⟶_

const[_]⟶_ : (X : Set )  Container I O c r  Container I O _ _
const[ X ]⟶ C = Π {X = X} (F.const C)

------------------------------------------------------------------------
-- Correctness proofs

module Identity where

  correct : {X : Pred O }   id {c = c}{r}  X ↔ᵢ F.id X
  correct {X = X} = mk↔ₛ′ to from  _  refl)  _  refl)
    where
    to :  {x}   id  X x  F.id X x
    to xs = proj₂ xs _

    from :  {x}  F.id X x   id  X x
    from x = (_ , λ _  x)

module Constant (ext :  {}  Extensionality  ) where

  correct : (X : Pred O ℓ₁) {Y : Pred O ℓ₂}   const X  Y ↔ᵢ F.const X Y
  correct X {Y} = mk↔ₛ′ to from  _  refl) to∘from
    where
    to :  const X  Y  X
    to = proj₁

    from : X   const X  Y
    from = < F.id , F.const ⊥-elim >

    to∘from : _
    to∘from xs = P.cong (proj₁ xs ,_) (ext ⊥-elim)

module Duality where

  correct : (C : Container I O c r) (X : Pred I ) 
             C ^⊥  X ↔ᵢ  o  (c : Command C o)   λ r  X (next C c r))
  correct C X = mk↔ₛ′  { (f , g)  < f , g > })  f  proj₁ ⟨∘⟩ f , proj₂ ⟨∘⟩ f)
                         _  refl)  _  refl)

module Composition where

  correct : (C₁ : Container J K c r) (C₂ : Container I J c r) 
            {X : Pred I }   C₁  C₂  X ↔ᵢ ( C₁  ⟨∘⟩  C₂ ) X
  correct C₁ C₂ {X} = mk↔ₛ′ to from  _  refl)  _  refl)
    where
    to :  C₁  C₂  X   C₁  ( C₂  X)
    to ((c , f) , g) = (c , < f , curry g >)

    from :  C₁  ( C₂  X)   C₁  C₂  X
    from (c , f) = ((c , proj₁ ⟨∘⟩ f) , uncurry (proj₂ ⟨∘⟩ f))

module Product (ext :  {}  Extensionality  ) where

  correct : (C₁ C₂ : Container I O c r) {X : Pred I _} 
             C₁ × C₂  X ↔ᵢ ( C₁  X   C₂  X)
  correct C₁ C₂ {X} = mk↔ₛ′ to from  _  refl) from∘to
    where
    to :  C₁ × C₂  X   C₁  X   C₂  X
    to ((c₁ , c₂) , k) = ((c₁ , k ⟨∘⟩ inj₁) , (c₂ , k ⟨∘⟩ inj₂))

    from :  C₁  X   C₂  X   C₁ × C₂  X
    from ((c₁ , k₁) , (c₂ , k₂)) = ((c₁ , c₂) , [ k₁ , k₂ ])

    from∘to : from ⟨∘⟩ to  F.id
    from∘to (c , _) =
      P.cong (c ,_) (ext [  _  refl) ,  _  refl) ])

module IndexedProduct where

  correct : (C : X  Container I O c r) {Y : Pred I } 
             Π C  Y ↔ᵢ ⋂[ x  X ]  C x  Y
  correct {X = X} C {Y} = mk↔ₛ′ to from  _  refl)  _  refl)
    where
    to :  Π C  Y  ⋂[ x  X ]  C x  Y
    to (c , k) = λ x  (c x , λ r  k (x , r))

    from : ⋂[ x  X ]  C x  Y   Π C  Y
    from f = (proj₁ ⟨∘⟩ f , uncurry (proj₂ ⟨∘⟩ f))

module Sum (ext :  {ℓ₁ ℓ₂}  Extensionality ℓ₁ ℓ₂) where

  correct : (C₁ C₂ : Container I O c r) {X : Pred I } 
             C₁  C₂  X ↔ᵢ ( C₁  X   C₂  X)
  correct C₁ C₂ {X} = mk↔ₛ′ to from to∘from from∘to
    where
    to :  C₁  C₂  X   C₁  X   C₂  X
    to (inj₁ c₁ , k) = inj₁ (c₁ , λ r  k (All.inj₁ r))
    to (inj₂ c₂ , k) = inj₂ (c₂ , λ r  k (All.inj₂ r))

    from :  C₁  X   C₂  X   C₁  C₂  X
    from (inj₁ (c , f)) = inj₁ c , λ{ (All.inj₁ r)  f r}
    from (inj₂ (c , f)) = inj₂ c , λ{ (All.inj₂ r)  f r}

    from∘to : from ⟨∘⟩ to  F.id
    from∘to (inj₁ _ , _) = P.cong (inj₁ _ ,_) (ext λ{ (All.inj₁ r)  refl})
    from∘to (inj₂ _ , _) = P.cong (inj₂ _ ,_) (ext λ{ (All.inj₂ r)  refl})

    to∘from : to ⟨∘⟩ from  F.id
    to∘from =  [  _  refl) ,  _  refl) ]

module Sum′ where

  correct : (C₁ C₂ : Container I O c r) {X : Pred I } 
             C₁ ⊎′ C₂  X ↔ᵢ ( C₁  X   C₂  X)
  correct C₁ C₂ {X} = mk↔ₛ′ to from to∘from from∘to
    where
    to :  C₁ ⊎′ C₂  X   C₁  X   C₂  X
    to (inj₁ c₁ , k) = inj₁ (c₁ , k)
    to (inj₂ c₂ , k) = inj₂ (c₂ , k)

    from :  C₁  X   C₂  X   C₁ ⊎′ C₂  X
    from = [ Prod.map inj₁ F.id , Prod.map inj₂ F.id ]

    from∘to : from ⟨∘⟩ to  F.id
    from∘to (inj₁ _ , _) = refl
    from∘to (inj₂ _ , _) = refl

    to∘from : to ⟨∘⟩ from  F.id
    to∘from = [  _  refl) ,  _  refl) ]

module IndexedSum where

  correct : (C : X  Container I O c r) {Y : Pred I } 
             Σ C  Y ↔ᵢ ⋃[ x  X ]  C x  Y
  correct {X = X} C {Y} = mk↔ₛ′ to from  _  refl)  _  refl)
    where
    to :  Σ C  Y  ⋃[ x  X ]  C x  Y
    to ((x , c) , k) = (x , (c , k))

    from : ⋃[ x  X ]  C x  Y   Σ C  Y
    from (x , (c , k)) = ((x , c) , k)

module ConstantExponentiation where

  correct : (C : Container I O c r) {Y : Pred I } 
             const[ X ]⟶ C  Y ↔ᵢ ( X (F.const ( C  Y)))
  correct C {Y} = IndexedProduct.correct (F.const C) {Y}