------------------------------------------------------------------------
-- The Agda standard library
--
-- An example of how Algebra.IdempotentCommutativeMonoidSolver can be
-- used
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Algebra.Solver.IdempotentCommutativeMonoid.Example where

open import Relation.Binary.PropositionalEquality using (_≡_)

open import Data.Bool.Base using (_∨_)
open import Data.Bool.Properties using (∨-idempotentCommutativeMonoid)

open import Data.Fin.Base using (zero; suc)
open import Data.Vec.Base using ([]; _∷_)

open import Algebra.Solver.IdempotentCommutativeMonoid
  ∨-idempotentCommutativeMonoid

test :  x y z  (x  y)  (x  z)  (z  y)  x
test a b c = let _∨_ = _⊕_ in
  prove 3 ((x  y)  (x  z)) ((z  y)  x) (a  b  c  [])
  where
  x = var zero
  y = var (suc zero)
  z = var (suc (suc zero))