{-# OPTIONS --cubical-compatible --safe #-}
open import Algebra.Bundles using (Semiring)
open import Data.Bool.Base using (true)
open import Data.Nat.Base as Nat hiding (_+_; _*_; _^_)
open import Data.Nat.Combinatorics
using (_C_; nCn≡1; nC1≡n; nCk+nC[k+1]≡[n+1]C[k+1])
open import Data.Nat.Properties as Nat
using (<⇒<ᵇ; n<1+n; n∸n≡0; +-∸-assoc)
open import Data.Fin.Base as Fin
using (Fin; zero; suc; toℕ; fromℕ; inject₁)
open import Data.Fin.Patterns using (0F)
open import Data.Fin.Properties as Fin
using (toℕ<n; toℕ-fromℕ; toℕ-inject₁)
open import Data.Fin.Relation.Unary.Top
using (view; ‵fromℕ; ‵inject₁; view-fromℕ; view-inject₁)
open import Function.Base using (_∘_)
open import Relation.Binary.PropositionalEquality.Core as ≡
using (_≡_; _≢_; cong)
module Algebra.Properties.Semiring.Binomial
{a ℓ} (S : Semiring a ℓ)
(open Semiring S)
(x y : Carrier)
where
open import Algebra.Definitions _≈_
open import Algebra.Properties.Semiring.Sum S
open import Algebra.Properties.Semiring.Mult S
open import Algebra.Properties.Semiring.Exp S
open import Relation.Binary.Reasoning.Setoid setoid
binomial : (n : ℕ) → Fin (suc n) → Carrier
binomial n k = (x ^ toℕ k) * (y ^ (n ∸ toℕ k))
binomialTerm : (n : ℕ) → Fin (suc n) → Carrier
binomialTerm n k = (n C toℕ k) × binomial n k
binomialExpansion : ℕ → Carrier
binomialExpansion n = ∑[ k ≤ n ] (binomialTerm n k)
term₁ : (n : ℕ) → Fin (suc (suc n)) → Carrier
term₁ n zero = 0#
term₁ n (suc k) = x * (binomialTerm n k)
term₂ : (n : ℕ) → Fin (suc (suc n)) → Carrier
term₂ n k with view k
... | ‵fromℕ = 0#
... | ‵inject₁ j = y * binomialTerm n j
sum₁ : ℕ → Carrier
sum₁ n = ∑[ k ≤ suc n ] term₁ n k
sum₂ : ℕ → Carrier
sum₂ n = ∑[ k ≤ suc n ] term₂ n k
term₂[n,n+1]≈0# : ∀ n → term₂ n (fromℕ (suc n)) ≈ 0#
term₂[n,n+1]≈0# n rewrite view-fromℕ (suc n) = refl
lemma₁ : ∀ n → x * binomialExpansion n ≈ sum₁ n
lemma₁ n = begin
x * binomialExpansion n ≈⟨ *-distribˡ-sum x (binomialTerm n) ⟩
∑[ i ≤ n ] (x * binomialTerm n i) ≈⟨ +-identityˡ _ ⟨
0# + ∑[ i ≤ n ] (x * binomialTerm n i) ≡⟨⟩
0# + ∑[ i ≤ n ] term₁ n (suc i) ≡⟨⟩
sum₁ n ∎
lemma₂ : ∀ n → y * binomialExpansion n ≈ sum₂ n
lemma₂ n = begin
y * binomialExpansion n ≈⟨ *-distribˡ-sum y (binomialTerm n) ⟩
∑[ i ≤ n ] (y * binomialTerm n i) ≈⟨ +-identityʳ _ ⟨
∑[ i ≤ n ] (y * binomialTerm n i) + 0# ≈⟨ +-cong (sum-cong-≋ lemma₂-inject₁) (sym (term₂[n,n+1]≈0# n)) ⟩
(∑[ i ≤ n ] term₂-inject₁ i) + term₂ n [n+1] ≈⟨ sum-init-last (term₂ n) ⟨
sum (term₂ n) ≡⟨⟩
sum₂ n ∎
where
[n+1] = fromℕ (suc n)
term₂-inject₁ : (i : Fin (suc n)) → Carrier
term₂-inject₁ i = term₂ n (inject₁ i)
lemma₂-inject₁ : ∀ i → y * binomialTerm n i ≈ term₂-inject₁ i
lemma₂-inject₁ i rewrite view-inject₁ i = refl
x*lemma : ∀ {n} (i : Fin (suc n)) →
x * binomialTerm n i ≈ (n C toℕ i) × binomial (suc n) (suc i)
x*lemma {n} i = begin
x * binomialTerm n i ≡⟨⟩
x * ((n C k) × (x ^ k * y ^ (n ∸ k))) ≈⟨ *-congˡ (×-assoc-* (n C k) _ _) ⟨
x * ((n C k) × x ^ k * y ^ (n ∸ k)) ≈⟨ *-assoc x ((n C k) × x ^ k) _ ⟨
(x * (n C k) × x ^ k) * y ^ (n ∸ k) ≈⟨ *-congʳ (×-comm-* (n C k) _ _) ⟩
(n C k) × x ^ (suc k) * y ^ (n ∸ k) ≡⟨⟩
(n C k) × x ^ (suc k) * y ^ (suc n ∸ suc k) ≈⟨ ×-assoc-* (n C k) _ _ ⟩
(n C k) × binomial (suc n) (suc i) ∎
where k = toℕ i
y*lemma : x * y ≈ y * x → ∀ {n : ℕ} (j : Fin n) →
y * binomialTerm n (suc j) ≈ (n C toℕ (suc j)) × binomial (suc n) (suc (inject₁ j))
y*lemma x*y≈y*x {n} j = begin
y * binomialTerm n (suc j)
≈⟨ ×-comm-* nC[j+1] y (binomial n (suc j)) ⟩
nC[j+1] × (y * binomial n (suc j))
≈⟨ ×-congʳ nC[j+1] (y*x^m*y^n≈x^m*y^[n+1] x*y≈y*x [j+1] [n-j-1]) ⟩
nC[j+1] × (x ^ [j+1] * y ^ [n-j])
≈⟨ ×-congʳ nC[j+1] (*-congʳ (^-congʳ x (cong suc k≡j))) ⟨
nC[j+1] × (x ^ [k+1] * y ^ [n-j])
≈⟨ ×-congʳ nC[j+1] (*-congˡ (^-congʳ y [n-k]≡[n-j])) ⟨
nC[j+1] × (x ^ [k+1] * y ^ [n-k])
≡⟨⟩
nC[j+1] × (x ^ [k+1] * y ^ [n+1]-[k+1])
≡⟨⟩
(n C toℕ (suc j)) × binomial (suc n) (suc i) ∎
where
i = inject₁ j
k = toℕ i
[k+1] = ℕ.suc k
[j+1] = toℕ (suc j)
[n-k] = n ∸ k
[n+1]-[k+1] = [n-k]
[n-j-1] = n ∸ [j+1]
[n-j] = ℕ.suc [n-j-1]
nC[j+1] = n C [j+1]
k≡j : k ≡ toℕ j
k≡j = toℕ-inject₁ j
[n-k]≡[n-j] : [n-k] ≡ [n-j]
[n-k]≡[n-j] = ≡.trans (cong (n ∸_) k≡j) (+-∸-assoc 1 (toℕ<n j))
private
n<ᵇ1+n : ∀ n → (n Nat.<ᵇ suc n) ≡ true
n<ᵇ1+n n with true ← n Nat.<ᵇ suc n | _ ← <⇒<ᵇ (n<1+n n) = ≡.refl
term₁+term₂≈term : x * y ≈ y * x → ∀ n i → term₁ n i + term₂ n i ≈ binomialTerm (suc n) i
term₁+term₂≈term x*y≈y*x n 0F = begin
term₁ n 0F + term₂ n 0F ≡⟨⟩
0# + y * (1 × (1# * y ^ n)) ≈⟨ +-identityˡ _ ⟩
y * (1 × (1# * y ^ n)) ≈⟨ *-congˡ (+-identityʳ (1# * y ^ n)) ⟩
y * (1# * y ^ n) ≈⟨ *-congˡ (*-identityˡ (y ^ n)) ⟩
y * y ^ n ≡⟨⟩
y ^ suc n ≈⟨ *-identityˡ (y ^ suc n) ⟨
1# * y ^ suc n ≈⟨ +-identityʳ (1# * y ^ suc n) ⟨
1 × (1# * y ^ suc n) ≡⟨⟩
binomialTerm (suc n) 0F ∎
term₁+term₂≈term x*y≈y*x n (suc i) with view i
... | ‵fromℕ {n}
rewrite toℕ-fromℕ n
| nCn≡1 n
| n∸n≡0 n
| n<ᵇ1+n n
= begin
x * ((x ^ n * 1#) + 0#) + 0# ≈⟨ +-identityʳ _ ⟩
x * ((x ^ n * 1#) + 0#) ≈⟨ *-congˡ (+-identityʳ _) ⟩
x * (x ^ n * 1#) ≈⟨ *-assoc _ _ _ ⟨
x * x ^ n * 1# ≈⟨ +-identityʳ _ ⟨
1 × (x * x ^ n * 1#) ∎
... | ‵inject₁ j
= begin
(x * binomialTerm n i) + (y * binomialTerm n (suc j))
≈⟨ +-cong (x*lemma i) (y*lemma x*y≈y*x j) ⟩
(nCk × [x^k+1]*[y^n-k]) + (nC[j+1] × [x^k+1]*[y^n-k])
≈⟨ +-congˡ (×-congˡ nC[k+1]≡nC[j+1]) ⟨
(nCk × [x^k+1]*[y^n-k]) + (nC[k+1] × [x^k+1]*[y^n-k])
≈⟨ ×-homo-+ [x^k+1]*[y^n-k] nCk nC[k+1] ⟨
(nCk Nat.+ nC[k+1]) × [x^k+1]*[y^n-k]
≡⟨ cong (_× [x^k+1]*[y^n-k]) (nCk+nC[k+1]≡[n+1]C[k+1] n k) ⟩
((suc n) C (suc k)) × [x^k+1]*[y^n-k]
≡⟨⟩
binomialTerm (suc n) (suc i) ∎
where
k = toℕ i
[k+1] = ℕ.suc k
[j+1] = toℕ (suc j)
nCk = n C k
nC[k+1] = n C [k+1]
nC[j+1] = n C [j+1]
[x^k+1]*[y^n-k] = binomial (suc n) (suc i)
nC[k+1]≡nC[j+1] : nC[k+1] ≡ nC[j+1]
nC[k+1]≡nC[j+1] = cong ((n C_) ∘ suc) (toℕ-inject₁ j)
theorem : x * y ≈ y * x → ∀ n → (x + y) ^ n ≈ binomialExpansion n
theorem x*y≈y*x zero = begin
(x + y) ^ 0 ≡⟨⟩
1# ≈⟨ 1×-identityʳ 1# ⟨
1 × 1# ≈⟨ *-identityʳ (1 × 1#) ⟨
(1 × 1#) * 1# ≈⟨ ×-assoc-* 1 1# 1# ⟩
1 × (1# * 1#) ≡⟨⟩
1 × (x ^ 0 * y ^ 0) ≈⟨ +-identityʳ _ ⟨
1 × (x ^ 0 * y ^ 0) + 0# ≡⟨⟩
(0 C 0) × (x ^ 0 * y ^ 0) + 0# ≡⟨⟩
binomialExpansion 0 ∎
theorem x*y≈y*x n+1@(suc n) = begin
(x + y) ^ n+1 ≡⟨⟩
(x + y) * (x + y) ^ n ≈⟨ *-congˡ (theorem x*y≈y*x n) ⟩
(x + y) * binomialExpansion n ≈⟨ distribʳ _ _ _ ⟩
x * binomialExpansion n + y * binomialExpansion n ≈⟨ +-cong (lemma₁ n) (lemma₂ n) ⟩
sum₁ n + sum₂ n ≈⟨ ∑-distrib-+ (term₁ n) (term₂ n) ⟨
∑[ i ≤ n+1 ] (term₁ n i + term₂ n i) ≈⟨ sum-cong-≋ (term₁+term₂≈term x*y≈y*x n) ⟩
∑[ i ≤ n+1 ] binomialTerm n+1 i ≡⟨⟩
binomialExpansion n+1 ∎