------------------------------------------------------------------------
-- The Agda standard library
--
-- Boolean algebra expressions
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Algebra.Lattice

module Algebra.Lattice.Properties.BooleanAlgebra.Expression
  {b} (B : BooleanAlgebra b b)
  where

open BooleanAlgebra B

open import Effect.Applicative as Applicative
open import Effect.Monad
open import Data.Fin.Base using (Fin)
open import Data.Nat.Base
open import Data.Product.Base using (_,_; proj₁; proj₂)
open import Data.Vec.Base as Vec using (Vec)
import Data.Vec.Effectful as Vec
import Function.Identity.Effectful as Identity
open import Data.Vec.Properties using (lookup-map)
open import Data.Vec.Relation.Binary.Pointwise.Extensional as PW
  using (Pointwise; ext)
open import Function.Base using (_∘_; _$_; flip)
open import Relation.Binary.PropositionalEquality as P using (_≗_)
import Relation.Binary.Reflection as Reflection

-- Expressions made up of variables and the operations of a boolean
-- algebra.

infixr 7 _and_
infixr 6 _or_

data Expr n : Set b where
  var        : (x : Fin n)  Expr n
  _or_ _and_ : (e₁ e₂ : Expr n)  Expr n
  not        : (e : Expr n)  Expr n
  top bot    : Expr n

-- The semantics of an expression, parametrised by an applicative
-- functor.

module Semantics
  {F : Set b  Set b}
  (A : RawApplicative F)
  where

  open RawApplicative A

  ⟦_⟧ :  {n}  Expr n  Vec (F Carrier) n  F Carrier
   var x      ρ = Vec.lookup ρ x
   e₁ or e₂   ρ = _∨_ <$>  e₁  ρ   e₂  ρ
   e₁ and e₂  ρ = _∧_ <$>  e₁  ρ   e₂  ρ
   not e      ρ = ¬_ <$>  e  ρ
   top        ρ = pure 
   bot        ρ = pure 

-- flip Semantics.⟦_⟧ e is natural.

module Naturality
  {F₁ F₂ : Set b  Set b}
  {A₁ : RawApplicative F₁}
  {A₂ : RawApplicative F₂}
  (f : Applicative.Morphism A₁ A₂)
  where

  open P.≡-Reasoning
  open Applicative.Morphism f
  open Semantics A₁ renaming (⟦_⟧ to ⟦_⟧₁)
  open Semantics A₂ renaming (⟦_⟧ to ⟦_⟧₂)
  open RawApplicative A₁ renaming (pure to pure₁; _<$>_ to _<$>₁_; _⊛_ to _⊛₁_)
  open RawApplicative A₂ renaming (pure to pure₂; _<$>_ to _<$>₂_; _⊛_ to _⊛₂_)

  natural :  {n} (e : Expr n)  op   e ⟧₁   e ⟧₂  Vec.map op
  natural (var x) ρ = begin
    op (Vec.lookup ρ x)                                            ≡⟨ P.sym $ lookup-map x op ρ 
    Vec.lookup (Vec.map op ρ) x                                    
  natural (e₁ or e₂) ρ = begin
    op (_∨_ <$>₁  e₁ ⟧₁ ρ ⊛₁  e₂ ⟧₁ ρ)                       ≡⟨ op-⊛ _ _ 
    op (_∨_ <$>₁  e₁ ⟧₁ ρ) ⊛₂ op ( e₂ ⟧₁ ρ)                  ≡⟨ P.cong₂ _⊛₂_ (op-<$> _ _) P.refl 
    _∨_ <$>₂ op ( e₁ ⟧₁ ρ) ⊛₂ op ( e₂ ⟧₁ ρ)                  ≡⟨ P.cong₂  e₁ e₂  _∨_ <$>₂ e₁ ⊛₂ e₂) (natural e₁ ρ) (natural e₂ ρ) 
    _∨_ <$>₂  e₁ ⟧₂ (Vec.map op ρ) ⊛₂  e₂ ⟧₂ (Vec.map op ρ)  
  natural (e₁ and e₂) ρ = begin
    op (_∧_ <$>₁  e₁ ⟧₁ ρ ⊛₁  e₂ ⟧₁ ρ)                       ≡⟨ op-⊛ _ _ 
    op (_∧_ <$>₁  e₁ ⟧₁ ρ) ⊛₂ op ( e₂ ⟧₁ ρ)                  ≡⟨ P.cong₂ _⊛₂_ (op-<$> _ _) P.refl 
    _∧_ <$>₂ op ( e₁ ⟧₁ ρ) ⊛₂ op ( e₂ ⟧₁ ρ)                  ≡⟨ P.cong₂  e₁ e₂  _∧_ <$>₂ e₁ ⊛₂ e₂) (natural e₁ ρ) (natural e₂ ρ) 
    _∧_ <$>₂  e₁ ⟧₂ (Vec.map op ρ) ⊛₂  e₂ ⟧₂ (Vec.map op ρ)  
  natural (not e) ρ = begin
    op (¬_ <$>₁  e ⟧₁ ρ)                                      ≡⟨ op-<$> _ _ 
    ¬_ <$>₂ op ( e ⟧₁ ρ)                                      ≡⟨ P.cong (¬_ <$>₂_) (natural e ρ) 
    ¬_ <$>₂  e ⟧₂ (Vec.map op ρ)                              
  natural top ρ = begin
    op (pure₁ )                                                   ≡⟨ op-pure _ 
    pure₂                                                         
  natural bot ρ = begin
    op (pure₁ )                                                   ≡⟨ op-pure _ 
    pure₂                                                         

-- An example of how naturality can be used: Any boolean algebra can
-- be lifted, in a pointwise manner, to vectors of carrier elements.

lift :   BooleanAlgebra b b
lift n = record
  { Carrier          = Vec Carrier n
  ; _≈_              = Pointwise _≈_
  ; _∨_              = zipWith _∨_
  ; _∧_              = zipWith _∧_
  ; ¬_               = map ¬_
  ;                 = pure 
  ;                 = pure 
  ; isBooleanAlgebra = isBooleanAlgebraʳ $ record
    { isDistributiveLattice = isDistributiveLatticeʳʲᵐ $ record
      { isLattice = record
        { isEquivalence = PW.isEquivalence isEquivalence
        ; ∨-comm        = λ xs ys  ext λ i 
                            solve i 2  x y  x or y , y or x)
                                  (∨-comm _ _) xs ys
        ; ∨-assoc       = λ xs ys _  ext λ i 
                            solve i 3
                               x y z  (x or y) or z , x or (y or z))
                              (∨-assoc _ _ _) xs ys _
        ; ∨-cong        = λ {xs} {ys} {us} {vs} xs≈us ys≈vs  ext λ i 
                            solve₁ i 4  x y u v  x or y , u or v)
                                   xs us ys vs
                                   (∨-cong (Pointwise.app xs≈us i)
                                           (Pointwise.app ys≈vs i))
        ; ∧-comm        = λ xs ys  ext λ i 
                            solve i 2  x y  x and y , y and x)
                                  (∧-comm _ _) xs ys
        ; ∧-assoc       = λ xs ys _  ext λ i 
                            solve i 3
                               x y z  (x and y) and z ,
                                         x and (y and z))
                              (∧-assoc _ _ _) xs ys _
        ; ∧-cong        = λ {xs} {ys} {us} {vs} xs≈ys us≈vs  ext λ i 
                            solve₁ i 4  x y u v  x and y , u and v)
                                   xs us ys vs
                                   (∧-cong (Pointwise.app xs≈ys i)
                                           (Pointwise.app us≈vs i))
        ; absorptive    =
           xs ys  ext λ i 
            solve i 2  x y  x or (x and y) , x) (∨-absorbs-∧ _ _) xs ys) ,
           xs ys  ext λ i 
            solve i 2  x y  x and (x or y) , x) (∧-absorbs-∨ _ _) xs ys)
        }
      ; ∨-distribʳ-∧ = λ xs ys zs  ext λ i 
                         solve i 3
                                x y z  (y and z) or x ,
                                          (y or x) and (z or x))
                               (∨-distribʳ-∧ _ _ _) xs ys zs
      }
    ; ∨-complementʳ = λ xs  ext λ i 
                        solve i 1  x  x or (not x) , top)
                              (∨-complementʳ _) xs
    ; ∧-complementʳ = λ xs  ext λ i 
                        solve i 1  x  x and (not x) , bot)
                              (∧-complementʳ _) xs
    ; ¬-cong        = λ {xs} {ys} xs≈ys  ext λ i 
                        solve₁ i 2  x y  not x , not y) xs ys
                               (¬-cong (Pointwise.app xs≈ys i))
    }
  }
  where
  open RawApplicative Vec.applicative
    using (pure; zipWith) renaming (_<$>_ to map)

  ⟦_⟧Id :  {n}  Expr n  Vec Carrier n  Carrier
  ⟦_⟧Id = Semantics.⟦_⟧ Identity.applicative

  ⟦_⟧Vec :  {m n}  Expr n  Vec (Vec Carrier m) n  Vec Carrier m
  ⟦_⟧Vec = Semantics.⟦_⟧ Vec.applicative

  open module R {n} (i : Fin n) =
    Reflection setoid var
       e ρ  Vec.lookup ( e ⟧Vec ρ) i)
       e ρ   e ⟧Id (Vec.map (flip Vec.lookup i) ρ))
       e ρ  sym $ reflexive $
                 Naturality.natural (Vec.lookup-morphism i) e ρ)