{-# OPTIONS --without-K --safe #-}
module Data.Unit.Polymorphic.Properties where
open import Level
open import Data.Sum.Base using (inj₁)
open import Data.Unit.Polymorphic.Base using (⊤; tt)
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
private
variable
ℓ : Level
infix 4 _≟_
_≟_ : Decidable {A = ⊤ {ℓ}} _≡_
_ ≟ _ = yes refl
≡-setoid : ∀ ℓ → Setoid ℓ ℓ
≡-setoid _ = setoid ⊤
≡-decSetoid : ∀ ℓ → DecSetoid ℓ ℓ
≡-decSetoid _ = decSetoid _≟_
≡-total : Total {A = ⊤ {ℓ}} _≡_
≡-total _ _ = inj₁ refl
≡-antisym : Antisymmetric {A = ⊤ {ℓ}} _≡_ _≡_
≡-antisym p _ = p
≡-isPreorder : ∀ ℓ → IsPreorder {ℓ} {_} {⊤} _≡_ _≡_
≡-isPreorder ℓ = record
{ isEquivalence = isEquivalence
; reflexive = λ x → x
; trans = trans
}
≡-isPartialOrder : ∀ ℓ → IsPartialOrder {ℓ} _≡_ _≡_
≡-isPartialOrder ℓ = record
{ isPreorder = ≡-isPreorder ℓ
; antisym = ≡-antisym
}
≡-isTotalOrder : ∀ ℓ → IsTotalOrder {ℓ} _≡_ _≡_
≡-isTotalOrder ℓ = record
{ isPartialOrder = ≡-isPartialOrder ℓ
; total = ≡-total
}
≡-isDecTotalOrder : ∀ ℓ → IsDecTotalOrder {ℓ} _≡_ _≡_
≡-isDecTotalOrder ℓ = record
{ isTotalOrder = ≡-isTotalOrder ℓ
; _≟_ = _≟_
; _≤?_ = _≟_
}
≡-preorder : ∀ ℓ → Preorder ℓ ℓ ℓ
≡-preorder ℓ = record
{ isPreorder = ≡-isPreorder ℓ
}
≡-poset : ∀ ℓ → Poset ℓ ℓ ℓ
≡-poset ℓ = record
{ isPartialOrder = ≡-isPartialOrder ℓ
}
≡-totalOrder : ∀ ℓ → TotalOrder ℓ ℓ ℓ
≡-totalOrder ℓ = record
{ isTotalOrder = ≡-isTotalOrder ℓ
}
≡-decTotalOrder : ∀ ℓ → DecTotalOrder ℓ ℓ ℓ
≡-decTotalOrder ℓ = record
{ isDecTotalOrder = ≡-isDecTotalOrder ℓ
}