------------------------------------------------------------------------
-- The Agda standard library
--
-- Decidable pointwise equality over lists using propositional equality
------------------------------------------------------------------------
-- Note think carefully about using this module as pointwise
-- propositional equality can usually be replaced with propositional
-- equality.
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
module Data.List.Relation.Binary.Equality.DecPropositional
{a} {A : Set a} (_≟_ : Decidable {A = A} _≡_) where
open import Data.List.Base using (List)
open import Data.List.Properties using (≡-dec)
import Data.List.Relation.Binary.Equality.Propositional as PropositionalEq
import Data.List.Relation.Binary.Equality.DecSetoid as DecSetoidEq
------------------------------------------------------------------------
-- Publically re-export everything from decSetoid and propositional
-- equality
open PropositionalEq public
open DecSetoidEq (decSetoid _≟_) public
using (_≋?_; ≋-isDecEquivalence; ≋-decSetoid)
------------------------------------------------------------------------
-- Additional proofs
_≡?_ : Decidable (_≡_ {A = List A})
_≡?_ = ≡-dec _≟_