{-# OPTIONS --without-K --safe #-}
module Algebra.Solver.IdempotentCommutativeMonoid.Example where
open import Relation.Binary.PropositionalEquality using (_≡_)
open import Data.Bool.Base using (_∨_)
open import Data.Bool.Properties using (∨-idempotentCommutativeMonoid)
open import Data.Fin.Base using (zero; suc)
open import Data.Vec.Base using ([]; _∷_)
open import Algebra.Solver.IdempotentCommutativeMonoid
  ∨-idempotentCommutativeMonoid
test : ∀ x y z → (x ∨ y) ∨ (x ∨ z) ≡ (z ∨ y) ∨ x
test a b c = let _∨_ = _⊕_ in
  prove 3 ((x ∨ y) ∨ (x ∨ z)) ((z ∨ y) ∨ x) (a ∷ b ∷ c ∷ [])
  where
  x = var zero
  y = var (suc zero)
  z = var (suc (suc zero))