------------------------------------------------------------------------
-- The Agda standard library
--
-- Basic auxiliary definitions for magma-like structures
------------------------------------------------------------------------
-- You're unlikely to want to use this module directly. Instead you
-- probably want to be importing the appropriate module from
-- `Algebra.Properties.(Magma/Semigroup/...).Divisibility`
{-# OPTIONS --without-K --safe #-}
open import Algebra.Bundles using (RawMagma)
open import Data.Product using (∃; _×_; _,_)
open import Level using (_⊔_)
open import Relation.Binary
open import Relation.Nullary using (¬_)
module Algebra.Definitions.RawMagma
{a ℓ} (M : RawMagma a ℓ)
where
open RawMagma M renaming (Carrier to A)
open import Algebra.Definitions _≈_
------------------------------------------------------------------------
-- Divisibility
infix 5 _∣ˡ_ _∤ˡ_ _∣ʳ_ _∤ʳ_ _∣_ _∤_
-- Divisibility from the left
_∣ˡ_ : Rel A (a ⊔ ℓ)
x ∣ˡ y = ∃ λ q → (x ∙ q) ≈ y
_∤ˡ_ : Rel A (a ⊔ ℓ)
x ∤ˡ y = ¬ x ∣ˡ y
-- Divisibility from the right
_∣ʳ_ : Rel A (a ⊔ ℓ)
x ∣ʳ y = ∃ λ q → (q ∙ x) ≈ y
_∤ʳ_ : Rel A (a ⊔ ℓ)
x ∤ʳ y = ¬ x ∣ʳ y
-- _∣ˡ_ and _∣ʳ_ are only equivalent in the commutative case. In this
-- case we take the right definition to be the primary one.
_∣_ : Rel A (a ⊔ ℓ)
_∣_ = _∣ʳ_
_∤_ : Rel A (a ⊔ ℓ)
x ∤ y = ¬ x ∣ y
------------------------------------------------------------------------
-- Mutual divisibility
-- When in a cancellative monoid, elements related by _∣∣_ are called
-- associated and if x ∣∣ y then x and y differ by an invertible factor.
infix 5 _∣∣_ _∤∤_
_∣∣_ : Rel A (a ⊔ ℓ)
x ∣∣ y = x ∣ y × y ∣ x
_∤∤_ : Rel A (a ⊔ ℓ)
x ∤∤ y = ¬ x ∣∣ y