------------------------------------------------------------------------
-- The Agda standard library
--
-- Indexed binary relations
------------------------------------------------------------------------

-- This file contains some core definitions which are re-exported by
-- Relation.Binary.Indexed.Heterogeneous.

{-# OPTIONS --without-K --safe #-}

module Relation.Binary.Indexed.Heterogeneous.Core where

open import Level
import Relation.Binary.Core as B
import Relation.Binary.PropositionalEquality.Core as P

------------------------------------------------------------------------
-- Indexed binary relations

-- Heterogeneous types

IREL :  {i₁ i₂ a₁ a₂} {I₁ : Set i₁} {I₂ : Set i₂} 
      (I₁  Set a₁)  (I₂  Set a₂)  ( : Level)  Set _
IREL A₁ A₂  =  {i₁ i₂}  A₁ i₁  A₂ i₂  Set 

-- Homogeneous types

IRel :  {i a} {I : Set i}  (I  Set a)  ( : Level)  Set _
IRel A  = IREL A A 

------------------------------------------------------------------------
-- Simple properties of indexed binary relations

Reflexive :  {i a } {I : Set i} (A : I  Set a)  IRel A   Set _
Reflexive _ _∼_ =  {i}  B.Reflexive (_∼_ {i})

Symmetric :  {i a } {I : Set i} (A : I  Set a)  IRel A   Set _
Symmetric _ _∼_ =  {i j}  B.Sym (_∼_ {i} {j}) _∼_

Transitive :  {i a } {I : Set i} (A : I  Set a)  IRel A   Set _
Transitive _ _∼_ =  {i j k}  B.Trans _∼_ (_∼_ {j}) (_∼_ {i} {k})

-- Generalised implication.

infixr 4 _=[_]⇒_

_=[_]⇒_ :  {a b ℓ₁ ℓ₂} {A : Set a} {B : A  Set b} 
          B.Rel A ℓ₁  ((x : A)  B x)  IRel B ℓ₂  Set _
P =[ f ]⇒ Q =  {i j}  P i j  Q (f i) (f j)