{-# OPTIONS --without-K --safe #-}
module Data.String.Properties where
open import Data.Bool.Base using (Bool)
import Data.Char.Properties as Charₚ
import Data.List.Properties as Listₚ
import Data.List.Relation.Binary.Pointwise as Pointwise
import Data.List.Relation.Binary.Lex.Strict as StrictLex
open import Data.String.Base
open import Function
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Decidable using (map′; ⌊_⌋)
open import Relation.Binary
using ( _⇒_; Reflexive; Symmetric; Transitive; Substitutive
; Decidable; IsEquivalence; IsDecEquivalence
; Setoid; DecSetoid; StrictTotalOrder)
open import Relation.Binary.PropositionalEquality.Core
import Relation.Binary.Construct.On as On
import Relation.Binary.PropositionalEquality as PropEq
open import Agda.Builtin.String.Properties public
renaming ( primStringToListInjective to toList-injective)
≈⇒≡ : _≈_ ⇒ _≡_
≈⇒≡ = toList-injective _ _
∘ Pointwise.Pointwise-≡⇒≡
∘ Pointwise.map Charₚ.≈⇒≡
≈-reflexive : _≡_ ⇒ _≈_
≈-reflexive = Pointwise.map Charₚ.≈-reflexive
∘ Pointwise.≡⇒Pointwise-≡
∘ cong toList
≈-refl : Reflexive _≈_
≈-refl {x} = ≈-reflexive {x} {x} refl
≈-sym : Symmetric _≈_
≈-sym = Pointwise.symmetric (λ {i j} → Charₚ.≈-sym {i} {j})
≈-trans : Transitive _≈_
≈-trans = Pointwise.transitive (λ {i j k} → Charₚ.≈-trans {i} {j} {k})
≈-subst : ∀ {ℓ} → Substitutive _≈_ ℓ
≈-subst P x≈y p = subst P (≈⇒≡ x≈y) p
infix 4 _≈?_
_≈?_ : Decidable _≈_
x ≈? y = Pointwise.decidable Charₚ._≈?_ (toList x) (toList y)
≈-isEquivalence : IsEquivalence _≈_
≈-isEquivalence = record
{ refl = λ {i} → ≈-refl {i}
; sym = λ {i j} → ≈-sym {i} {j}
; trans = λ {i j k} → ≈-trans {i} {j} {k}
}
≈-setoid : Setoid _ _
≈-setoid = record
{ isEquivalence = ≈-isEquivalence
}
≈-isDecEquivalence : IsDecEquivalence _≈_
≈-isDecEquivalence = record
{ isEquivalence = ≈-isEquivalence
; _≟_ = _≈?_
}
≈-decSetoid : DecSetoid _ _
≈-decSetoid = record
{ isDecEquivalence = ≈-isDecEquivalence
}
infix 4 _≟_
_≟_ : Decidable _≡_
x ≟ y = map′ ≈⇒≡ ≈-reflexive $ x ≈? y
≡-setoid : Setoid _ _
≡-setoid = PropEq.setoid String
≡-decSetoid : DecSetoid _ _
≡-decSetoid = PropEq.decSetoid _≟_
infix 4 _<?_
_<?_ : Decidable _<_
x <? y = StrictLex.<-decidable Charₚ._≈?_ Charₚ._<?_ (toList x) (toList y)
<-strictTotalOrder-≈ : StrictTotalOrder _ _ _
<-strictTotalOrder-≈ =
On.strictTotalOrder
(StrictLex.<-strictTotalOrder Charₚ.<-strictTotalOrder-≈)
toList
infix 4 _==_
_==_ : String → String → Bool
s₁ == s₂ = ⌊ s₁ ≟ s₂ ⌋
private
data P : (String → Bool) → Set where
p : (c : String) → P (_==_ c)
unit-test : P (_==_ "")
unit-test = p _
setoid = ≡-setoid
{-# WARNING_ON_USAGE setoid
"Warning: setoid was deprecated in v1.1.
Please use ≡-setoid instead."
#-}
decSetoid = ≡-decSetoid
{-# WARNING_ON_USAGE decSetoid
"Warning: decSetoid was deprecated in v1.1.
Please use ≡-decSetoid instead."
#-}
strictTotalOrder = <-strictTotalOrder-≈
{-# WARNING_ON_USAGE strictTotalOrder
"Warning: strictTotalOrder was deprecated in v1.1.
Please use <-strictTotalOrder-≈ instead."
#-}