------------------------------------------------------------------------
-- The Agda standard library
--
-- Component functions of permutations found in `Data.Fin.Permutation`
------------------------------------------------------------------------

module Data.Fin.Permutation.Components where

open import Data.Fin
open import Data.Fin.Properties
open import Data.Nat as  using (zero; suc; _∸_)
import Data.Nat.Properties as ℕₚ
open import Data.Product using (proj₂)
open import Relation.Nullary using (yes; no)
open import Relation.Binary.PropositionalEquality
open import Algebra.FunctionProperties using (Involutive)
open ≡-Reasoning

--------------------------------------------------------------------------------
--  Functions
--------------------------------------------------------------------------------

-- 'tranpose i j' swaps the places of 'i' and 'j'.

transpose :  {n}  Fin n  Fin n  Fin n  Fin n
transpose i j k with k  i
... | yes _ = j
... | no  _ with k  j
...   | yes _ = i
...   | no  _ = k

-- reverse i = n ∸ 1 ∸ i

reverse :  {n}  Fin n  Fin n
reverse {zero}  ()
reverse {suc n} i  = inject≤ (n ℕ- i) (ℕₚ.n∸m≤n (toℕ i) (suc n))

--------------------------------------------------------------------------------
--  Properties
--------------------------------------------------------------------------------

transpose-inverse :  {n} (i j : Fin n) {k} 
                    transpose i j (transpose j i k)  k
transpose-inverse i j {k} with k  j
... | yes p rewrite ≡-≟-identity _≟_ {a = i} refl = sym p
... | no ¬p with k  i
transpose-inverse i j {k} | no ¬p | yes q with j  i
... | yes r = trans r (sym q)
... | no ¬r rewrite ≡-≟-identity _≟_ {a = j} refl = sym q
transpose-inverse i j {k} | no ¬p | no ¬q
  rewrite proj₂ (≢-≟-identity _≟_ ¬q)
        | proj₂ (≢-≟-identity _≟_ ¬p) = refl

reverse-prop :  {n}  (i : Fin n)  toℕ (reverse i)  n  suc (toℕ i)
reverse-prop {zero} ()
reverse-prop {suc n} i = begin
  toℕ (inject≤ (n ℕ- i) _)  ≡⟨ toℕ-inject≤ _ _ 
  toℕ (n ℕ- i)              ≡⟨ toℕ‿ℕ- n i 
  n  toℕ i                 

reverse-involutive :  {n}  Involutive _≡_ (reverse {n})
reverse-involutive {zero}  ()
reverse-involutive {suc n} i = toℕ-injective (begin
  toℕ (reverse (reverse i)) ≡⟨ reverse-prop (reverse i) 
  n  (toℕ (reverse i))     ≡⟨ cong (n ∸_) (reverse-prop i) 
  n  (n  (toℕ i))         ≡⟨ ℕₚ.m∸[m∸n]≡n (ℕₚ.≤-pred (toℕ<n i)) 
  toℕ i                     )

reverse-suc :  {n}{i : Fin n}  toℕ (reverse (suc i))  toℕ (reverse i)
reverse-suc {n} {i} = begin
  toℕ (reverse (suc i))      ≡⟨ reverse-prop (suc i) 
  suc n  suc (toℕ (suc i))  ≡⟨⟩
  n  toℕ (suc i)            ≡⟨⟩
  n  suc (toℕ i)            ≡⟨ sym (reverse-prop i) 
  toℕ (reverse i)