module Category.Functor where
open import Function
open import Level
open import Relation.Binary.PropositionalEquality
record RawFunctor {ℓ} (F : Set ℓ → Set ℓ) : Set (suc ℓ) where
infixl 4 _<$>_ _<$_
infixl 1 _<&>_
field
_<$>_ : ∀ {A B} → (A → B) → F A → F B
_<$_ : ∀ {A B} → A → F B → F A
x <$ y = const x <$> y
_<&>_ : ∀ {A B} → F A → (A → B) → F B
_<&>_ = flip _<$>_
record Morphism {ℓ} {F₁ F₂ : Set ℓ → Set ℓ}
(fun₁ : RawFunctor F₁)
(fun₂ : RawFunctor F₂) : Set (suc ℓ) where
open RawFunctor
field
op : ∀{X} → F₁ X → F₂ X
op-<$> : ∀{X Y} (f : X → Y) (x : F₁ X) →
op (fun₁ ._<$>_ f x) ≡ fun₂ ._<$>_ f (op x)