------------------------------------------------------------------------
-- The Agda standard library
--
-- Some examples showing where the integers and some related
-- operations and properties are defined, and how they can be used
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible #-}

module README.Data.Integer where

-- The integers and various arithmetic operations are defined in
-- Data.Integer.

open import Data.Integer

-- The +_ function converts natural numbers into integers.

ex₁ : 
ex₁ = + 2

-- The -_ function negates an integer.

ex₂ : 
ex₂ = - + 4

-- Some binary operators are also defined, including addition,
-- subtraction and multiplication.

ex₃ : 
ex₃ = + 1  +  + 3 * - + 2  -  + 4

-- Propositional equality and some related properties can be found
-- in Relation.Binary.PropositionalEquality.

open import Relation.Binary.PropositionalEquality as  using (_≡_)

ex₄ : ex₃  - + 9
ex₄ = ≡.refl

-- Data.Integer.Properties contains a number of properties related to
-- integers. Algebra defines what a commutative ring is, among other
-- things.

import Data.Integer.Properties as 

ex₅ :  i j  i * j  j * i
ex₅ i j = ℤ.*-comm i j

-- The module ≡-Reasoning in Relation.Binary.PropositionalEquality
-- provides some combinators for equational reasoning.

open ≡.≡-Reasoning

ex₆ :  i j  i * (j + + 0)  j * i
ex₆ i j = begin
  i * (j + + 0)  ≡⟨ ≡.cong (i *_) (ℤ.+-identityʳ j) 
  i * j          ≡⟨ ℤ.*-comm i j 
  j * i          

-- The module RingSolver in Data.Integer.Solver contains a solver
-- for integer equalities involving variables, constants, _+_, _*_, -_
-- and _-_.

open import Data.Integer.Solver using (module +-*-Solver)
open +-*-Solver

ex₇ :  i j  i * - j - j * i  - + 2 * i * j
ex₇ = solve 2  i j  i :* :- j :- j :* i  :=  :- con (+ 2) :* i :* j)
              ≡.refl