{-# OPTIONS --cubical-compatible --safe #-}
module README.Data.Fin.Substitution.UntypedLambda where
open import Data.Fin.Substitution
open import Data.Fin.Substitution.Lemmas
open import Data.Nat.Base hiding (_/_)
open import Data.Fin.Base using (Fin)
open import Data.Vec.Base
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym; cong; cong₂; module ≡-Reasoning)
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
using (Star; ε; _◅_)
open ≡-Reasoning
private
variable
m n : ℕ
infixl 9 _·_
data Lam (n : ℕ) : Set where
var : (x : Fin n) → Lam n
ƛ : (t : Lam (suc n)) → Lam n
_·_ : (t₁ t₂ : Lam n) → Lam n
module LamApp {ℓ} {T : ℕ → Set ℓ} (l : Lift T Lam) where
open Lift l hiding (var)
infixl 8 _/_
_/_ : Lam m → Sub T m n → Lam n
var x / ρ = lift (lookup ρ x)
ƛ t / ρ = ƛ (t / ρ ↑)
t₁ · t₂ / ρ = (t₁ / ρ) · (t₂ / ρ)
open Application (record { _/_ = _/_ }) using (_/✶_)
ƛ-/✶-↑✶ : ∀ k {t} (ρs : Subs T m n) →
ƛ t /✶ ρs ↑✶ k ≡ ƛ (t /✶ ρs ↑✶ suc k)
ƛ-/✶-↑✶ k ε = refl
ƛ-/✶-↑✶ k (ρ ◅ ρs) = cong (_/ _) (ƛ-/✶-↑✶ k ρs)
·-/✶-↑✶ : ∀ k {t₁ t₂} (ρs : Subs T m n) →
t₁ · t₂ /✶ ρs ↑✶ k ≡ (t₁ /✶ ρs ↑✶ k) · (t₂ /✶ ρs ↑✶ k)
·-/✶-↑✶ k ε = refl
·-/✶-↑✶ k (ρ ◅ ρs) = cong (_/ _) (·-/✶-↑✶ k ρs)
lamSubst : TermSubst Lam
lamSubst = record { var = var; app = LamApp._/_ }
open TermSubst lamSubst hiding (var)
lamLemmas : TermLemmas Lam
lamLemmas = record
{ termSubst = lamSubst
; app-var = refl
; /✶-↑✶ = Lemma./✶-↑✶
}
where
module Lemma {T₁ T₂} {lift₁ : Lift T₁ Lam} {lift₂ : Lift T₂ Lam} where
open Lifted lift₁ using () renaming (_↑✶_ to _↑✶₁_; _/✶_ to _/✶₁_)
open Lifted lift₂ using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂_)
/✶-↑✶ : (ρs₁ : Subs T₁ m n) (ρs₂ : Subs T₂ m n) →
(∀ k x → var x /✶₁ ρs₁ ↑✶₁ k ≡ var x /✶₂ ρs₂ ↑✶₂ k) →
∀ k t → t /✶₁ ρs₁ ↑✶₁ k ≡ t /✶₂ ρs₂ ↑✶₂ k
/✶-↑✶ ρs₁ ρs₂ hyp k (var x) = hyp k x
/✶-↑✶ ρs₁ ρs₂ hyp k (ƛ t) = begin
ƛ t /✶₁ ρs₁ ↑✶₁ k ≡⟨ LamApp.ƛ-/✶-↑✶ _ k ρs₁ ⟩
ƛ (t /✶₁ ρs₁ ↑✶₁ suc k) ≡⟨ cong ƛ (/✶-↑✶ ρs₁ ρs₂ hyp (suc k) t) ⟩
ƛ (t /✶₂ ρs₂ ↑✶₂ suc k) ≡⟨ sym (LamApp.ƛ-/✶-↑✶ _ k ρs₂) ⟩
ƛ t /✶₂ ρs₂ ↑✶₂ k ∎
/✶-↑✶ ρs₁ ρs₂ hyp k (t₁ · t₂) = begin
t₁ · t₂ /✶₁ ρs₁ ↑✶₁ k ≡⟨ LamApp.·-/✶-↑✶ _ k ρs₁ ⟩
(t₁ /✶₁ ρs₁ ↑✶₁ k) · (t₂ /✶₁ ρs₁ ↑✶₁ k) ≡⟨ cong₂ _·_ (/✶-↑✶ ρs₁ ρs₂ hyp k t₁)
(/✶-↑✶ ρs₁ ρs₂ hyp k t₂) ⟩
(t₁ /✶₂ ρs₂ ↑✶₂ k) · (t₂ /✶₂ ρs₂ ↑✶₂ k) ≡⟨ sym (LamApp.·-/✶-↑✶ _ k ρs₂) ⟩
t₁ · t₂ /✶₂ ρs₂ ↑✶₂ k ∎
open TermLemmas lamLemmas public hiding (var)