{-# OPTIONS --cubical-compatible --safe #-}
open import Relation.Binary.Lattice
using (BoundedMeetSemilattice; IsBoundedJoinSemilattice; BoundedJoinSemilattice)
module Relation.Binary.Lattice.Properties.BoundedMeetSemilattice
{c ℓ₁ ℓ₂} (M : BoundedMeetSemilattice c ℓ₁ ℓ₂) where
open import Function.Base using (_∘_; flip)
open BoundedMeetSemilattice M
using (⊤; _∧_; isBoundedMeetSemilattice; _≈_; poset; _≤_; infimum; maximum)
open import Algebra.Definitions _≈_
using (LeftIdentity; RightIdentity; Identity)
open import Relation.Binary.Properties.Poset poset using (≥-isPartialOrder)
import Relation.Binary.Lattice.Properties.BoundedJoinSemilattice as J
dualIsBoundedJoinSemilattice : IsBoundedJoinSemilattice _≈_ (flip _≤_) _∧_ ⊤
dualIsBoundedJoinSemilattice = record
{ isJoinSemilattice = record
{ isPartialOrder = ≥-isPartialOrder
; supremum = infimum
}
; minimum = maximum
}
dualBoundedJoinSemilattice : BoundedJoinSemilattice c ℓ₁ ℓ₂
dualBoundedJoinSemilattice = record
{ ⊥ = ⊤
; isBoundedJoinSemilattice = dualIsBoundedJoinSemilattice
}
open J dualBoundedJoinSemilattice
hiding (dualIsBoundedMeetSemilattice; dualBoundedMeetSemilattice) public