{-# OPTIONS --cubical-compatible --safe #-}
module Data.Refinement where
open import Level
open import Data.Irrelevant as Irrelevant using (Irrelevant)
open import Function.Base
open import Relation.Unary using (IUniversal; _⇒_; _⊢_)
private
variable
a b p q : Level
A : Set a
B : Set b
record Refinement {a p} (A : Set a) (P : A → Set p) : Set (a ⊔ p) where
constructor _,_
field value : A
proof : Irrelevant (P value)
infixr 4 _,_
open Refinement public
infix 2 Refinement-syntax
Refinement-syntax = Refinement
syntax Refinement-syntax A (λ x → P) = [ x ∈ A ∣ P ]
module _ {P : A → Set p} {Q : B → Set q} where
map : (f : A → B) → ∀[ P ⇒ f ⊢ Q ] →
[ a ∈ A ∣ P a ] → [ b ∈ B ∣ Q b ]
map f prf (a , p) = f a , Irrelevant.map prf p
module _ {P : A → Set p} {Q : A → Set q} where
refine : ∀[ P ⇒ Q ] → [ a ∈ A ∣ P a ] → [ a ∈ A ∣ Q a ]
refine = map id