------------------------------------------------------------------------
-- The Agda standard library
--
-- Bag and set equality
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.List.Relation.Binary.BagAndSetEquality where

open import Algebra.Bundles using (CommutativeMonoid)
open import Algebra.Definitions using (Idempotent)
open import Algebra.Structures.Biased using (isCommutativeMonoidˡ)
open import Effect.Monad using (RawMonad)
open import Data.Empty using (; ⊥-elim)
open import Data.Fin.Base using (Fin; zero; suc)
open import Data.List.Base
  using (List; []; _∷_; map; _++_; concat; [_]; lookup; length)
open import Data.List.Effectful using (monad; module Applicative; module MonadProperties)
import Data.List.Properties as List
open import Data.List.Relation.Unary.Any using (Any; here; there)
open import Data.List.Relation.Unary.Any.Properties
  using (∷↔; map↔; Any-cong; ++↔; concat↔; >>=↔; ++↔++; ⊎↔; ⊥↔Any[])
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Membership.Propositional.Properties
  using (∈-∃++)
open import Data.List.Relation.Binary.Subset.Propositional.Properties
  using (⊆-preorder)
open import Data.List.Relation.Binary.Permutation.Propositional
  using (_↭_; ↭-sym; refl; module PermutationReasoning)
open import Data.List.Relation.Binary.Permutation.Propositional.Properties
  using (∈-resp-↭; ∈-resp-[σ⁻¹∘σ]; ↭-sym-involutive; shift; ++-comm)
open import Data.Product.Base as Product using (; _,_; proj₁; proj₂; _×_)
import Data.Product.Function.Dependent.Propositional as Σ
open import Data.Sum.Base as Sum using (_⊎_; [_,_]′; inj₁; inj₂)
open import Data.Sum.Properties using (inj₂-injective; inj₁-injective)
open import Data.Sum.Function.Propositional using (_⊎-cong_)
open import Data.Unit.Polymorphic.Base using ()
open import Function.Base using (_∘_; _$_; id; _⟨_⟩_; case_of_)
open import Function.Bundles using (_↔_; Inverse; Equivalence; mk↔ₛ′; mk⇔)
open import Function.Related.Propositional as Related
  using (↔⇒; ⌊_⌋; ⌊_⌋→; ⇒→; K-refl; SK-sym)
open import Function.Related.TypeIsomorphisms using (×-identityʳ; ∃∃↔∃∃)
open import Function.Properties.Inverse using (↔-sym; ↔-trans; to-from)
open import Level using (Level)
open import Relation.Binary.Core using (_⇒_)
open import Relation.Binary.Definitions using (Trans)
open import Relation.Binary.Bundles using (Preorder; Setoid)
import Relation.Binary.Reasoning.Setoid as ≈-Reasoning
import Relation.Binary.Reasoning.Preorder as ≲-Reasoning
open import Relation.Binary.PropositionalEquality.Core as 
  using (_≡_; _≢_; _≗_; refl)
open import Relation.Binary.PropositionalEquality.Properties as 
  using (module ≡-Reasoning)
open import Relation.Binary.Reasoning.Syntax
open import Relation.Nullary.Negation.Core using (¬_)

private
  variable
    a b : Level
    A B : Set a
    x y : A
    ws xs ys zs : List A

------------------------------------------------------------------------
-- Definitions

open Related public using (Kind; SymmetricKind) renaming
  ( implication         to subset
  ; reverseImplication  to superset
  ; equivalence         to set
  ; injection           to subbag
  ; reverseInjection    to superbag
  ; bijection           to bag
  )

[_]-Order : Kind  Set a  Preorder _ _ _
[ k ]-Order A = Related.InducedPreorder₂ {A = A} k _∈_

[_]-Equality : SymmetricKind  Set a  Setoid _ _
[ k ]-Equality A = Related.InducedEquivalence₂ {A = A} k _∈_

infix 4 _∼[_]_

_∼[_]_ :  {a} {A : Set a}  List A  Kind  List A  Set _
_∼[_]_ {A = A} xs k ys = Preorder._≲_ ([ k ]-Order A) xs ys

private
  module Eq  {k a} {A : Set a} = Setoid ([ k ]-Equality A)
  module Ord {k a} {A : Set a} = Preorder ([ k ]-Order A)
  open module ListMonad {} = RawMonad (monad { = })
  module MP = MonadProperties

------------------------------------------------------------------------
-- Bag equality implies the other relations.

bag-=⇒ :  {k}  xs ∼[ bag ] ys  xs ∼[ k ] ys
bag-=⇒ xs≈ys = ↔⇒ xs≈ys

------------------------------------------------------------------------
-- "Equational" reasoning for _⊆_ along with an additional relatedness

module ⊆-Reasoning {A : Set a} where
  private module Base = ≲-Reasoning (⊆-preorder A)

  open Base public
    hiding (step-≈; step-≈˘; step-≈-⟩; step-≈-⟨; step-∼; step-≲)
    renaming (≲-go to ⊆-go)

  open begin-membership-syntax _IsRelatedTo_ _∈_  x  begin x) public
  open ⊆-syntax _IsRelatedTo_ _IsRelatedTo_ ⊆-go public

  module _ {k : Related.ForwardKind} where
    ∼-go : Trans _∼[  k ⌋→ ]_ _IsRelatedTo_ _IsRelatedTo_
    ∼-go eq = ⊆-go (⇒→ eq)

    open ∼-syntax _IsRelatedTo_ _IsRelatedTo_ ∼-go public


------------------------------------------------------------------------
-- Congruence lemmas
------------------------------------------------------------------------
-- _∷_

module _ {k} {x y : A} {xs ys} where

  ∷-cong : x  y  xs ∼[ k ] ys  x  xs ∼[ k ] y  ys
  ∷-cong refl xs≈ys {y} = begin
    y  x  xs        ↔⟨ SK-sym $ ∷↔ (y ≡_) 
    (y  x  y  xs)  ∼⟨ K-refl ⊎-cong xs≈ys 
    (y  x  y  ys)  ↔⟨ ∷↔ (y ≡_) 
    y  x  ys        
    where open Related.EquationalReasoning

------------------------------------------------------------------------
-- map

module _ {k} {f g : A  B} {xs ys} where

  map-cong : f  g  xs ∼[ k ] ys  map f xs ∼[ k ] map g ys
  map-cong f≗g xs≈ys {x} = begin
    x  map f xs            ↔⟨ SK-sym $ map↔ 
    Any  y  x  f y) xs  ∼⟨ Any-cong (↔⇒  helper) xs≈ys 
    Any  y  x  g y) ys  ↔⟨ map↔ 
    x  map g ys            
    where
    open Related.EquationalReasoning

    helper :  y  x  f y  x  g y
    helper y = mk↔ₛ′
       x≡fy  ≡.trans x≡fy (        f≗g y))
       x≡gy  ≡.trans x≡gy (≡.sym $ f≗g y))
       { ≡.refl  ≡.trans-symˡ (f≗g y) })
      λ { ≡.refl  ≡.trans-symʳ (f≗g y) }

------------------------------------------------------------------------
-- _++_

module _ {k} {xs₁ xs₂ ys₁ ys₂ : List A} where

  ++-cong : xs₁ ∼[ k ] xs₂  ys₁ ∼[ k ] ys₂ 
            xs₁ ++ ys₁ ∼[ k ] xs₂ ++ ys₂
  ++-cong xs₁≈xs₂ ys₁≈ys₂ {x} = begin
    x  xs₁ ++ ys₁       ↔⟨ SK-sym $ ++↔ 
    (x  xs₁  x  ys₁)  ∼⟨ xs₁≈xs₂ ⊎-cong ys₁≈ys₂ 
    (x  xs₂  x  ys₂)  ↔⟨ ++↔ 
    x  xs₂ ++ ys₂       
    where open Related.EquationalReasoning

------------------------------------------------------------------------
-- concat

module _ {k} {xss yss : List (List A)} where

  concat-cong : xss ∼[ k ] yss  concat xss ∼[ k ] concat yss
  concat-cong xss≈yss {x} = begin
    x  concat xss        ↔⟨ SK-sym concat↔ 
    Any (Any (x ≡_)) xss  ∼⟨ Any-cong  _  _ ) xss≈yss 
    Any (Any (x ≡_)) yss  ↔⟨ concat↔ 
    x  concat yss         
    where open Related.EquationalReasoning

------------------------------------------------------------------------
-- _>>=_

module _ {k} {A B : Set a} {xs ys} {f g : A  List B} where

  >>=-cong : xs ∼[ k ] ys  (∀ x  f x ∼[ k ] g x) 
             (xs >>= f) ∼[ k ] (ys >>= g)
  >>=-cong xs≈ys f≈g {x} = begin
    x  (xs >>= f)          ↔⟨ SK-sym >>=↔ 
    Any  y  x  f y) xs  ∼⟨ Any-cong  x  f≈g x) xs≈ys 
    Any  y  x  g y) ys  ↔⟨ >>=↔ 
    x  (ys >>= g)          
    where open Related.EquationalReasoning


------------------------------------------------------------------------
-- _⊛_

module _ {k} {A B : Set a} {fs gs : List (A  B)} {xs ys} where

  ⊛-cong : fs ∼[ k ] gs  xs ∼[ k ] ys  (fs  xs) ∼[ k ] (gs  ys)
  ⊛-cong fs≈gs xs≈ys {x} = begin
    x  (fs  xs)
      ≡⟨ ≡.cong (x ∈_) (Applicative.unfold-⊛ fs xs) 
    x  (fs >>= λ f  xs >>= λ x  pure (f x))
      ∼⟨ >>=-cong fs≈gs  f  >>=-cong xs≈ys λ x  K-refl) 
    x  (gs >>= λ g  ys >>= λ y  pure (g y))
      ≡⟨ ≡.cong (x ∈_) (Applicative.unfold-⊛ gs ys) 
    x  (gs  ys) 
    where open Related.EquationalReasoning

------------------------------------------------------------------------
-- _⊗_

module _ { k} {A B : Set } {xs₁ xs₂ : List A} {ys₁ ys₂ : List B} where

  ⊗-cong : xs₁ ∼[ k ] xs₂  ys₁ ∼[ k ] ys₂ 
           (xs₁  ys₁) ∼[ k ] (xs₂  ys₂)
  ⊗-cong xs₁≈xs₂ ys₁≈ys₂ =
    ⊛-cong (map-cong  _  refl) xs₁≈xs₂) ys₁≈ys₂

------------------------------------------------------------------------
-- Other properties

-- _++_ and [] form a commutative monoid, with either bag or set
-- equality as the underlying equality.

commutativeMonoid : SymmetricKind  Set a  CommutativeMonoid _ _
commutativeMonoid {a} k A = record
  { Carrier             = List A
  ; _≈_                 = _∼[  k  ]_
  ; _∙_                 = _++_
  ; ε                   = []
  ; isCommutativeMonoid = isCommutativeMonoidˡ record
    { isSemigroup = record
      { isMagma = record
        { isEquivalence = Eq.isEquivalence
        ; ∙-cong        = ++-cong
        }
      ; assoc         = λ xs ys zs 
                          Eq.reflexive (List.++-assoc xs ys zs)
      }
    ; identityˡ = λ xs  K-refl
    ; comm      = λ xs ys  ↔⇒ (++↔++ xs ys)
    }
  }
  where open Related.EquationalReasoning

-- The only list which is bag or set equal to the empty list (or a
-- subset or subbag of the list) is the empty list itself.

empty-unique :  {k}  xs ∼[  k ⌋→ ] []  xs  []
empty-unique {xs = []}    _    = refl
empty-unique {xs = _  _} ∷∼[] with ()⇒→ ∷∼[] (here refl)

-- _++_ is idempotent (under set equality).

++-idempotent : Idempotent {A = List A} _∼[ set ]_ _++_
++-idempotent xs {x} =
  x  xs ++ xs
    ∼⟨ mk⇔ ([ id , id ]′  (Inverse.from $ ++↔)) (Inverse.to ++↔  inj₁) 
  x  xs 
  where open Related.EquationalReasoning

-- The list monad's bind distributes from the left over _++_.

>>=-left-distributive :
   (xs : List A) {f g : A  List B} 
  (xs >>= λ x  f x ++ g x) ∼[ bag ] (xs >>= f) ++ (xs >>= g)
>>=-left-distributive {} xs {f} {g} {y} =
  y  (xs >>= λ x  f x ++ g x)                      ↔⟨ SK-sym $ >>=↔ 
  Any  x  y  f x ++ g x) xs                      ↔⟨ SK-sym (Any-cong  _  ++↔) (_ )) 
  Any  x  y  f x  y  g x) xs                   ↔⟨ SK-sym $ ⊎↔ 
  (Any  x  y  f x) xs  Any  x  y  g x) xs)  ↔⟨ >>=↔  _⊎-cong_  >>=↔ 
  (y  (xs >>= f)  y  (xs >>= g))                  ↔⟨ ++↔ 
  y  (xs >>= f) ++ (xs >>= g)                       
  where open Related.EquationalReasoning

-- The same applies to _⊛_.

⊛-left-distributive :
   (fs : List (A  B)) xs₁ xs₂ 
  (fs  (xs₁ ++ xs₂)) ∼[ bag ] (fs  xs₁) ++ (fs  xs₂)
⊛-left-distributive {B = B} fs xs₁ xs₂ = begin
  fs  (xs₁ ++ xs₂)                       ≡⟨ Applicative.unfold-⊛ fs (xs₁ ++ xs₂) 
  (fs >>= λ f  xs₁ ++ xs₂ >>= pure  f)  ≡⟨ (MP.cong (refl {x = fs}) λ f 
                                                MP.right-distributive xs₁ xs₂ (pure  f)) 
  (fs >>= λ f  (xs₁ >>= pure  f) ++
                (xs₂ >>= pure  f))       ≈⟨ >>=-left-distributive fs 

  (fs >>= λ f  xs₁ >>= pure  f) ++
  (fs >>= λ f  xs₂ >>= pure  f)         ≡⟨ ≡.cong₂ _++_ (Applicative.unfold-⊛ fs xs₁) (Applicative.unfold-⊛ fs xs₂) 

  (fs  xs₁) ++ (fs  xs₂)                
  where open ≈-Reasoning ([ bag ]-Equality B)

private

  -- If x ∷ xs is set equal to x ∷ ys, then xs and ys are not
  -- necessarily set equal.

  ¬-drop-cons :  {x : A} 
    ¬ (∀ {xs ys}  x  xs ∼[ set ] x  ys  xs ∼[ set ] ys)
  ¬-drop-cons {x = x} drop-cons with Equivalence.to x∼[] (here refl)
    where
    x,x≈x :  (x  x  []) ∼[ set ] [ x ]
    x,x≈x = ++-idempotent [ x ]

    x∼[] : [ x ] ∼[ set ] []
    x∼[] = drop-cons x,x≈x
  ... | ()

-- However, the corresponding property does hold for bag equality.

drop-cons :  {x : A} {xs ys}  x  xs ∼[ bag ] x  ys  xs ∼[ bag ] ys
drop-cons {x = x} {xs} {ys} x∷xs≈x∷ys =
  ⊎-left-cancellative
    (∼→⊎↔⊎ x∷xs≈x∷ys)
    (lemma x∷xs≈x∷ys)
    (lemma (SK-sym x∷xs≈x∷ys))

  where

  -- TODO: Some of the code below could perhaps be exposed to users.

  -- List membership can be expressed as "there is an index which
  -- points to the element".

  ∈-index :  {z} (xs : List A)  z  xs   λ i  z  lookup xs i
  ∈-index {z = z} [] =
    z  []                              ↔⟨ SK-sym ⊥↔Any[] 
                                       ↔⟨ mk↔ₛ′  ())  { (() , _) })  { (() , _) })  ()) 
    ( λ (i : Fin 0)  z  lookup [] i)  
    where
    open Related.EquationalReasoning
  ∈-index {z = z} (x  xs) =
    z  x  xs                         ↔⟨ SK-sym (∷↔ _) 
    (z  x  z  xs)                   ↔⟨ K-refl ⊎-cong ∈-index xs 
    (z  x   λ i  z  lookup xs i)  ↔⟨ mk↔ₛ′  { (inj₁ p)  zero , p; (inj₂ (i , p))  suc i , p })
                                                   { (zero , p)  inj₁ p; (suc i , p)  inj₂ (i , p) })
                                                   { (zero , _)  refl; (suc _ , _)  refl })
                                                   { (inj₁ _)  refl; (inj₂ _)  refl }) 
    ( λ i  z  lookup (x  xs) i)    
    where
    open Related.EquationalReasoning

  -- The index which points to the element.

  index-of :  {a} {A : Set a} {z} {xs : List A} 
             z  xs  Fin (length xs)
  index-of = proj₁  (Inverse.to (∈-index _))

  -- The type ∃ λ z → z ∈ xs is isomorphic to Fin n, where n is the
  -- length of xs.
  --
  -- Thierry Coquand pointed out that (a variant of) this statement is
  -- a generalisation of the fact that singletons are contractible.

  Fin-length :  {a} {A : Set a}
               (xs : List A)  ( λ z  z  xs)  Fin (length xs)
  Fin-length xs =
    ( λ z  z  xs)                   ↔⟨ Σ.cong K-refl (∈-index xs) 
    ( λ z   λ i  z  lookup xs i)  ↔⟨ ∃∃↔∃∃ _ 
    ( λ i   λ z  z  lookup xs i)  ↔⟨ Σ.cong K-refl (mk↔ₛ′ _  _  _ , refl)  _  refl)  { (_ , refl)  refl })) 
    (Fin (length xs) × )              ↔⟨ ×-identityʳ _ _ 
    Fin (length xs)                    
    where
    open Related.EquationalReasoning

  -- From this lemma we get that lists which are bag equivalent have
  -- related lengths.

  Fin-length-cong :  {a} {A : Set a} {xs ys : List A} 
                    xs ∼[ bag ] ys  Fin (length xs)  Fin (length ys)
  Fin-length-cong {xs = xs} {ys} xs≈ys =
    Fin (length xs)   ↔⟨ SK-sym $ Fin-length xs 
      z  z  xs)  ↔⟨ Σ.cong K-refl xs≈ys 
      z  z  ys)  ↔⟨ Fin-length ys 
    Fin (length ys)   
    where
    open Related.EquationalReasoning

  -- The index-of function commutes with applications of certain
  -- inverses.

  index-of-commutes :
     {a} {A : Set a} {z : A} {xs ys} 
    (xs≈ys : xs ∼[ bag ] ys) (p : z  xs) 
    index-of (Inverse.to xs≈ys p) 
    Inverse.to (Fin-length-cong xs≈ys) (index-of p)
  index-of-commutes {z = z} {xs} {ys} xs≈ys p =
    index-of (to xs≈ys p)                                        ≡⟨ lemma z p 

    index-of (to xs≈ys (proj₂
      (from (Fin-length xs) (to (Fin-length xs) (z , p)))))   ≡⟨⟩

    index-of (proj₂ (Product.map₂ (to xs≈ys)
      (from (Fin-length xs) (to (Fin-length xs) (z , p)))))   ≡⟨⟩

    to (Fin-length ys) (Product.map₂ (to xs≈ys)
      (from (Fin-length xs) (index-of p)))                    ≡⟨⟩

    to (Fin-length-cong xs≈ys) (index-of p)                   
    where
    open ≡-Reasoning
    open Inverse

    lemma :
       z p 
      index-of (to xs≈ys p) 
      index-of (to xs≈ys (proj₂
        (from (Fin-length xs) (to (Fin-length xs) (z , p)))))
    lemma z p with to (Fin-length xs) (z , p)
                 | strictlyInverseʳ (Fin-length xs) (z , p)
    lemma .(lookup xs i) .(from (∈-index xs) (i , refl)) | i | refl =
      refl

  -- Bag equivalence isomorphisms preserve index equality. Note that
  -- this means that, even if the underlying equality is proof
  -- relevant, a bag equivalence isomorphism cannot map two distinct
  -- proofs, that point to the same position, to different positions.

  index-equality-preserved :
     {a} {A : Set a} {z : A} {xs ys} {p q : z  xs}
    (xs≈ys : xs ∼[ bag ] ys) 
    index-of p  index-of q 
    index-of (Inverse.to xs≈ys p) 
    index-of (Inverse.to xs≈ys q)
  index-equality-preserved {p = p} {q} xs≈ys eq =
    index-of (Inverse.to xs≈ys p)                   ≡⟨ index-of-commutes xs≈ys p 
    Inverse.to (Fin-length-cong xs≈ys) (index-of p) ≡⟨ ≡.cong (Inverse.to (Fin-length-cong xs≈ys)) eq 
    Inverse.to (Fin-length-cong xs≈ys) (index-of q) ≡⟨ ≡.sym $ index-of-commutes xs≈ys q 
    index-of (Inverse.to xs≈ys q)                   
    where
    open ≡-Reasoning

  -- The old inspect idiom.

  inspect :  {a} {A : Set a} (x : A)   (x ≡_)
  inspect x = x , refl

  -- A function is "well-behaved" if any "left" element which is the
  -- image of a "right" element is in turn not mapped to another
  -- "left" element.

  Well-behaved :  {a b c} {A : Set a} {B : Set b} {C : Set c} 
                 (A  B  A  C)  Set _
  Well-behaved f =
     {b a a′}  f (inj₂ b)  inj₁ a  f (inj₁ a)  inj₁ a′

  -- The type constructor _⊎_ is left cancellative for certain
  -- well-behaved inverses.

  ⊎-left-cancellative :
     {a b c} {A : Set a} {B : Set b} {C : Set c}
    (f : (A  B)  (A  C)) 
    Well-behaved (Inverse.to   f) 
    Well-behaved (Inverse.from f) 
    B  C
  ⊎-left-cancellative {A = A} = λ inv to-hyp from-hyp  mk↔ₛ′
    (g (to   inv) to-hyp)
    (g (from inv) from-hyp)
    (g∘g (SK-sym inv) from-hyp to-hyp)
    (g∘g         inv  to-hyp from-hyp)
    where
    open Inverse

    module _
      {a b c} {A : Set a} {B : Set b} {C : Set c}
      (f : A  B  A  C)
      (hyp : Well-behaved f)
      where

      mutual

        g : B  C
        g b = g′ (inspect (f (inj₂ b)))

        g′ :  {b}   (f (inj₂ b) ≡_)  C
        g′ (inj₂ c , _)  = c
        g′ (inj₁ a , eq) = g″ eq (inspect (f (inj₁ a)))

        g″ :  {a b} 
             f (inj₂ b)  inj₁ a   (f (inj₁ a) ≡_)  C
        g″ _   (inj₂ c , _)   = c
        g″ eq₁ (inj₁ _ , eq₂) = ⊥-elim $ hyp eq₁ eq₂

    g∘g :  {b c} {B : Set b} {C : Set c}
          (f : (A  B)  (A  C)) 
          (to-hyp   : Well-behaved (to   f)) 
          (from-hyp : Well-behaved (from f)) 
           b  g (from f) from-hyp (g (to f) to-hyp b)  b
    g∘g f to-hyp from-hyp b = g∘g′
      where
      open ≡-Reasoning

      g∘g′ : g (from f) from-hyp (g (to f) to-hyp b)  b
      g∘g′ with inspect (to f (inj₂ b))
      g∘g′ | inj₂ c , eq₁ with inspect (from f (inj₂ c))
      ...   | inj₂ b′ , eq₂ = inj₂-injective (
        inj₂ b′            ≡⟨ ≡.sym eq₂ 
        from f (inj₂ c)   ≡⟨ to-from f eq₁ 
        inj₂ b            )
      ...   | inj₁ a  , eq₂ with
        inj₁ a             ≡⟨ ≡.sym eq₂ 
        from f (inj₂ c)    ≡⟨ to-from f eq₁ 
        inj₂ b             
      ... | ()
      g∘g′ | inj₁ a , eq₁ with inspect (to f (inj₁ a))
      g∘g′ | inj₁ a , eq₁ | inj₁ a′ , eq₂ = ⊥-elim $ to-hyp eq₁ eq₂
      g∘g′ | inj₁ a , eq₁ | inj₂ c  , eq₂ with inspect (from f (inj₂ c))
      g∘g′ | inj₁ a , eq₁ | inj₂ c  , eq₂ | inj₂ b′ , eq₃ with
        inj₁ a             ≡⟨ ≡.sym (to-from f eq₂) 
        from f (inj₂ c)    ≡⟨ eq₃ 
        inj₂ b′            
      ... | ()
      g∘g′ | inj₁ a , eq₁ | inj₂ c  , eq₂ | inj₁ a′ , eq₃ with inspect (from f $ inj₁ a′)
      g∘g′ | inj₁ a , eq₁ | inj₂ c  , eq₂ | inj₁ a′ , eq₃ | inj₁ a″ , eq₄ = ⊥-elim $ from-hyp eq₃ eq₄
      g∘g′ | inj₁ a , eq₁ | inj₂ c  , eq₂ | inj₁ a′ , eq₃ | inj₂ b′ , eq₄ = inj₂-injective (
        let lemma =
              inj₁ a′            ≡⟨ ≡.sym eq₃ 
              from f (inj₂ c)    ≡⟨ to-from f eq₂ 
              inj₁ a             
        in
        inj₂ b′             ≡⟨ ≡.sym eq₄ 
        from f (inj₁ a′)    ≡⟨ ≡.cong (from f  inj₁) $ inj₁-injective lemma 
        from f (inj₁ a)     ≡⟨ to-from f eq₁ 
        inj₂ b              )

  -- Some final lemmas.

  ∼→⊎↔⊎ :
     {x : A} {xs ys} 
    x  xs ∼[ bag ] x  ys 
     {z}  (z  x  z  xs)  (z  x  z  ys)
  ∼→⊎↔⊎ {x = x} {xs} {ys} x∷xs≈x∷ys {z} =
    (z  x  z  xs)  ↔⟨ ∷↔ _ 
    z  x  xs        ↔⟨ x∷xs≈x∷ys 
    z  x  ys        ↔⟨ SK-sym (∷↔ _) 
    (z  x  z  ys)  
    where
    open Related.EquationalReasoning

  lemma :  {xs ys} (inv : x  xs ∼[ bag ] x  ys) {z} 
          Well-behaved (Inverse.to (∼→⊎↔⊎ inv {z}))
  lemma {xs} inv {b = z∈xs} {a = p} {a′ = q} hyp₁ hyp₂ = case contra of λ ()
    where
    open Inverse
    open ≡-Reasoning
    contra : zero  suc (index-of {xs = xs} z∈xs)
    contra = begin
      zero
        ≡⟨⟩
      index-of {xs = x  xs} (here p)
        ≡⟨⟩
      index-of {xs = x  xs} (to (∷↔ _) $ inj₁ p)
        ≡⟨ ≡.cong (index-of  (to (∷↔ (_ ≡_)))) $ to-from (∼→⊎↔⊎ inv) {x = inj₁ p} hyp₂ 
      index-of {xs = x  xs} (to (∷↔ _) $ (from (∼→⊎↔⊎ inv) $ inj₁ q))
        ≡⟨ ≡.cong index-of $ strictlyInverseˡ (∷↔ _) (from inv (here q)) 
      index-of {xs = x  xs} (to (SK-sym inv) $ here q)
        ≡⟨ index-equality-preserved (SK-sym inv) refl 
      index-of {xs = x  xs} (to (SK-sym inv) $ here p)
        ≡⟨ ≡.cong index-of $ strictlyInverseˡ (∷↔ _) (from inv (here p)) 
      index-of {xs = x  xs} (to (∷↔ _) (from (∼→⊎↔⊎ inv) $ inj₁ p))
        ≡⟨ ≡.cong (index-of  (to (∷↔ (_ ≡_)))) $ to-from (∼→⊎↔⊎ inv) {x = inj₂ z∈xs} hyp₁ 
      index-of {xs = x  xs} (to (∷↔ _) $ inj₂ z∈xs)
        ≡⟨⟩
      index-of {xs = x  xs} (there z∈xs)
        ≡⟨⟩
      suc (index-of {xs = xs} z∈xs)
        


------------------------------------------------------------------------
-- Relationships to other relations

↭⇒∼bag : _↭_ {A = A}  _∼[ bag ]_
↭⇒∼bag xs↭ys {v} = mk↔ₛ′ (to xs↭ys) (from xs↭ys) (to∘from xs↭ys) (from∘to xs↭ys)
  where
  to :  {xs ys}  xs  ys  v  xs  v  ys
  to xs↭ys = ∈-resp-↭ xs↭ys

  from :  {xs ys}  xs  ys  v  ys  v  xs
  from xs↭ys = ∈-resp-↭ (↭-sym xs↭ys)

  from∘to :  {xs ys} (p : xs  ys) (q : v  xs)  from p (to p q)  q
  from∘to = ∈-resp-[σ⁻¹∘σ]

  to∘from :  {xs ys} (p : xs  ys) (q : v  ys)  to p (from p q)  q
  to∘from p with resfrom∘to (↭-sym p) rewrite ↭-sym-involutive p = res

∼bag⇒↭ : _∼[ bag ]_  _↭_ {A = A}
∼bag⇒↭ {A = A} {[]} eq with reflempty-unique (↔-sym eq) = refl
∼bag⇒↭ {A = A} {x  xs} eq
  with zs₁ , zs₂ , p∈-∃++ (Inverse.to (eq {x}) (here ≡.refl)) rewrite p = begin
    x  xs           <⟨ ∼bag⇒↭ (drop-cons (↔-trans eq (comm zs₁ (x  zs₂)))) 
    x  (zs₂ ++ zs₁) <⟨ ++-comm zs₂ zs₁ 
    x  (zs₁ ++ zs₂) ↭⟨ shift x zs₁ zs₂ 
    zs₁ ++ x  zs₂   
    where
    open CommutativeMonoid (commutativeMonoid bag A)
    open PermutationReasoning