------------------------------------------------------------------------
-- The Agda standard library
--
-- Multiplication over a monoid (i.e. repeated addition)
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Algebra.Bundles using (Monoid)

module Algebra.Properties.Monoid.Mult {a } (M : Monoid a ) where

open import Data.Bool.Base as Bool using (true; false; _∧_)
open import Data.Nat.Base as  using (; zero; suc; NonZero)
open import Relation.Binary.Core using (_Preserves_⟶_; _Preserves₂_⟶_⟶_)
open import Relation.Binary.PropositionalEquality.Core as  using (_≡_)

-- View of the monoid operator as addition
open Monoid M
  renaming
  ( _∙_       to _+_
  ; ∙-cong    to +-cong
  ; ∙-congʳ   to +-congʳ
  ; ∙-congˡ   to +-congˡ
  ; identityˡ to +-identityˡ
  ; identityʳ to +-identityʳ
  ; assoc     to +-assoc
  ; ε         to 0#
  )

open import Algebra.Definitions _≈_
open import Algebra.Properties.Semigroup semigroup
open import Relation.Binary.Reasoning.Setoid setoid

------------------------------------------------------------------------
-- Definition

open import Algebra.Definitions.RawMonoid rawMonoid public
  using (_×_; _?>₀_; _?>_∙_)

------------------------------------------------------------------------
-- Properties of _×_

×-congʳ :  n  (n ×_) Preserves _≈_  _≈_
×-congʳ 0       x≈x′ = refl
×-congʳ (suc n) x≈x′ = +-cong x≈x′ (×-congʳ n x≈x′)

×-cong : _×_ Preserves₂ _≡_  _≈_  _≈_
×-cong {n} ≡.refl x≈x′ = ×-congʳ n x≈x′

×-congˡ :  {x}  ( x) Preserves _≡_  _≈_
×-congˡ m≡n = ×-cong m≡n refl

-- _×_ is homomorphic with respect to _ℕ+_/_+_.

×-homo-0 :  x  0 × x  0#
×-homo-0 x = refl

×-homo-1 :  x  1 × x  x
×-homo-1 = +-identityʳ

×-homo-+ :  x m n  (m ℕ.+ n) × x  m × x + n × x
×-homo-+ x 0       n = sym (+-identityˡ (n × x))
×-homo-+ x (suc m) n = sym (uv≈w⇒xu∙v≈xw (sym (×-homo-+ x m n)) x)

×-idem :  {c}  _+_ IdempotentOn c 
          n  .{{_ : NonZero n}}  n × c  c
×-idem {c} idem (suc zero)    = +-identityʳ c
×-idem {c} idem (suc n@(suc _)) = begin
  c + (n × c) ≈⟨ +-congˡ (×-idem idem n ) 
  c + c       ≈⟨ idem 
  c           

×-assocˡ :  x m n  m × (n × x)  (m ℕ.* n) × x
×-assocˡ x zero    n = refl
×-assocˡ x (suc m) n = begin
  n × x + m × n × x     ≈⟨ +-congˡ (×-assocˡ x m n) 
  n × x + (m ℕ.* n) × x ≈⟨ ×-homo-+ x n (m ℕ.* n) 
  (suc m ℕ.* n) × x     

-- _?>₀_ is homomorphic with respect to Bool._∧_.

?>₀-homo-true :  x  true ?>₀ x  x
?>₀-homo-true _ = refl

?>₀-assocˡ :  b b′ x  b ?>₀ b′ ?>₀ x  (b  b′) ?>₀ x
?>₀-assocˡ false _ _ = refl
?>₀-assocˡ true  _ _ = refl

b?>x∙y≈b?>₀x+y :  b x y  b ?> x  y  b ?>₀ x + y
b?>x∙y≈b?>₀x+y true  _ _ = refl
b?>x∙y≈b?>₀x+y false _ y = sym (+-identityˡ y)

b?>₀x≈b?>x∙0 :  b x  b ?>₀ x  b ?> x  0#
b?>₀x≈b?>x∙0 true  _ = sym (+-identityʳ _)
b?>₀x≈b?>x∙0 false x = refl