Source code on Github
{-# OPTIONS --cubical-compatible --safe #-}
module Reflection.AST.Argument.Modality where
open import Data.Product.Base using (_×_; <_,_>; uncurry)
open import Relation.Nullary.Decidable.Core using (map′; _×-dec_)
open import Relation.Binary.Definitions using (DecidableEquality)
open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong₂)
open import Reflection.AST.Argument.Relevance as Relevance using (Relevance)
open import Reflection.AST.Argument.Quantity as Quantity using (Quantity)
private
variable
r r′ : Relevance
q q′ : Quantity
open import Agda.Builtin.Reflection public using (Modality)
open Modality public
relevance : Modality → Relevance
relevance (modality r _) = r
quantity : Modality → Quantity
quantity (modality _ q) = q
modality-injective₁ : modality r q ≡ modality r′ q′ → r ≡ r′
modality-injective₁ refl = refl
modality-injective₂ : modality r q ≡ modality r′ q′ → q ≡ q′
modality-injective₂ refl = refl
modality-injective : modality r q ≡ modality r′ q′ → r ≡ r′ × q ≡ q′
modality-injective = < modality-injective₁ , modality-injective₂ >
infix 4 _≟_
_≟_ : DecidableEquality Modality
modality r q ≟ modality r′ q′ =
map′
(uncurry (cong₂ modality))
modality-injective
(r Relevance.≟ r′ ×-dec q Quantity.≟ q′)