Source code on Github
------------------------------------------------------------------------
-- The Agda standard library
--
-- An effectful view of the Sum type (Left-biased)
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Level

module Data.Sum.Effectful.Left {a} (A : Set a) (b : Level) where

open import Data.Sum.Base
open import Effect.Choice
open import Effect.Empty
open import Effect.Functor
open import Effect.Applicative
open import Effect.Monad
open import Function.Base

-- To minimize the universe level of the RawFunctor, we require that
-- elements of B are "lifted" to a copy of B at a higher universe level
-- (a ⊔ b). See the examples for how this is done.

------------------------------------------------------------------------
-- Left-biased monad instance for _⊎_

Sumₗ : Set (a  b)  Set (a  b)
Sumₗ B = A  B

functor : RawFunctor Sumₗ
functor = record { _<$>_ = map₂ }

applicative : RawApplicative Sumₗ
applicative = record
  { rawFunctor = functor
  ; pure = inj₂
  ; _<*>_ = [ const  inj₁ , map₂ ]′
  }

empty : A  RawEmpty Sumₗ
empty a = record { empty = inj₁ a }

choice : RawChoice Sumₗ
choice = record { _<|>_ = [ flip const , const  inj₂ ]′ }

applicativeZero : A  RawApplicativeZero Sumₗ
applicativeZero a = record
  { rawApplicative = applicative
  ; rawEmpty = empty a
  }

alternative : A  RawAlternative Sumₗ
alternative a = record
  { rawApplicativeZero = applicativeZero a
  ; rawChoice = choice
  }

monad : RawMonad Sumₗ
monad = record
  { rawApplicative = applicative
  ; _>>=_ = [ const ∘′ inj₁ , _|>′_ ]′
  }

join : {B : Set (a  b)}  Sumₗ (Sumₗ B)  Sumₗ B
join = Join.join monad

------------------------------------------------------------------------
-- Get access to other monadic functions

module TraversableA {F} (App : RawApplicative {a  b} {a  b} F) where

  open RawApplicative App

  sequenceA :  {A}  Sumₗ (F A)  F (Sumₗ A)
  sequenceA (inj₁ a) = pure (inj₁ a)
  sequenceA (inj₂ x) = inj₂ <$> x

  mapA :  {A B}  (A  F B)  Sumₗ A  F (Sumₗ B)
  mapA f = sequenceA  map₂ f

  forA :  {A B}  Sumₗ A  (A  F B)  F (Sumₗ B)
  forA = flip mapA

module TraversableM {M} (Mon : RawMonad {a  b} {a  b} M) where

  open RawMonad Mon

  open TraversableA rawApplicative public
    renaming
    ( sequenceA to sequenceM
    ; mapA      to mapM
    ; forA      to forM
    )