Source code on Github
{-# OPTIONS --cubical-compatible --safe #-}
open import Level
module Data.Sum.Effectful.Left {a} (A : Set a) (b : Level) where
open import Data.Sum.Base
open import Effect.Choice
open import Effect.Empty
open import Effect.Functor
open import Effect.Applicative
open import Effect.Monad
open import Function.Base
Sumₗ : Set (a ⊔ b) → Set (a ⊔ b)
Sumₗ B = A ⊎ B
functor : RawFunctor Sumₗ
functor = record { _<$>_ = map₂ }
applicative : RawApplicative Sumₗ
applicative = record
{ rawFunctor = functor
; pure = inj₂
; _<*>_ = [ const ∘ inj₁ , map₂ ]′
}
empty : A → RawEmpty Sumₗ
empty a = record { empty = inj₁ a }
choice : RawChoice Sumₗ
choice = record { _<|>_ = [ flip const , const ∘ inj₂ ]′ }
applicativeZero : A → RawApplicativeZero Sumₗ
applicativeZero a = record
{ rawApplicative = applicative
; rawEmpty = empty a
}
alternative : A → RawAlternative Sumₗ
alternative a = record
{ rawApplicativeZero = applicativeZero a
; rawChoice = choice
}
monad : RawMonad Sumₗ
monad = record
{ rawApplicative = applicative
; _>>=_ = [ const ∘′ inj₁ , _|>′_ ]′
}
join : {B : Set (a ⊔ b)} → Sumₗ (Sumₗ B) → Sumₗ B
join = Join.join monad
module TraversableA {F} (App : RawApplicative {a ⊔ b} {a ⊔ b} F) where
open RawApplicative App
sequenceA : ∀ {A} → Sumₗ (F A) → F (Sumₗ A)
sequenceA (inj₁ a) = pure (inj₁ a)
sequenceA (inj₂ x) = inj₂ <$> x
mapA : ∀ {A B} → (A → F B) → Sumₗ A → F (Sumₗ B)
mapA f = sequenceA ∘ map₂ f
forA : ∀ {A B} → Sumₗ A → (A → F B) → F (Sumₗ B)
forA = flip mapA
module TraversableM {M} (Mon : RawMonad {a ⊔ b} {a ⊔ b} M) where
open RawMonad Mon
open TraversableA rawApplicative public
renaming
( sequenceA to sequenceM
; mapA to mapM
; forA to forM
)