Source code on Github
------------------------------------------------------------------------
-- The Agda standard library
--
-- Refinement type: a value together with a proof irrelevant witness.
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.Refinement where

open import Level
open import Data.Irrelevant as Irrelevant using (Irrelevant)
open import Function.Base
open import Relation.Unary using (IUniversal; _⇒_; _⊢_)

private
  variable
    a b p q : Level
    A : Set a
    B : Set b

record Refinement {a p} (A : Set a) (P : A  Set p) : Set (a  p) where
  constructor _,_
  field value : A
        proof : Irrelevant (P value)
infixr 4 _,_
open Refinement public

-- The syntax declaration below is meant to mimick set comprehension.
-- It is attached to Refinement-syntax, to make it easy to import
-- Data.Refinement without the special syntax.

infix 2 Refinement-syntax
Refinement-syntax = Refinement
syntax Refinement-syntax A  x  P) = [ x  A  P ]

module _ {P : A  Set p} {Q : B  Set q} where

  map : (f : A  B)  ∀[ P  f  Q ] 
        [ a  A  P a ]  [ b  B  Q b ]
  map f prf (a , p) = f a , Irrelevant.map prf p

module _ {P : A  Set p} {Q : A  Set q} where

  refine : ∀[ P  Q ]  [ a  A  P a ]  [ a  A  Q a ]
  refine = map id