Source code on Github
------------------------------------------------------------------------
-- The Agda standard library
--
-- An inductive definition for the permutation relation
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.List.Relation.Binary.Permutation.Propositional
  {a} {A : Set a} where

open import Data.List.Base using (List; []; _∷_)
open import Relation.Binary.Core using (Rel; _⇒_)
open import Relation.Binary.Bundles using (Setoid)
open import Relation.Binary.Structures using (IsEquivalence)
open import Relation.Binary.Definitions using (Reflexive; Transitive)
open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl)
import Relation.Binary.Reasoning.Setoid as EqReasoning
open import Relation.Binary.Reasoning.Syntax

------------------------------------------------------------------------
-- An inductive definition of permutation

-- Note that one would expect that this would be defined in terms of
-- `Permutation.Setoid`. This is not currently the case as it involves
-- adding in a bunch of trivial `_≡_` proofs to the constructors which
-- a) adds noise and b) prevents easy access to the variables `x`, `y`.
-- This may be changed in future when a better solution is found.

infix 3 _↭_

data _↭_ : Rel (List A) a where
  refl  :  {xs}         xs  xs
  prep  :  {xs ys} x    xs  ys  x  xs  x  ys
  swap  :  {xs ys} x y  xs  ys  x  y  xs  y  x  ys
  trans :  {xs ys zs}   xs  ys  ys  zs  xs  zs

------------------------------------------------------------------------
-- _↭_ is an equivalence

↭-reflexive : _≡_  _↭_
↭-reflexive refl = refl

↭-refl : Reflexive _↭_
↭-refl = refl

↭-sym :  {xs ys}  xs  ys  ys  xs
↭-sym refl                = refl
↭-sym (prep x xs↭ys)      = prep x (↭-sym xs↭ys)
↭-sym (swap x y xs↭ys)    = swap y x (↭-sym xs↭ys)
↭-sym (trans xs↭ys ys↭zs) = trans (↭-sym ys↭zs) (↭-sym xs↭ys)

-- A smart version of trans that avoids unnecessary `refl`s (see #1113).
↭-trans : Transitive _↭_
↭-trans refl ρ₂ = ρ₂
↭-trans ρ₁ refl = ρ₁
↭-trans ρ₁ ρ₂   = trans ρ₁ ρ₂

↭-isEquivalence : IsEquivalence _↭_
↭-isEquivalence = record
  { refl  = refl
  ; sym   = ↭-sym
  ; trans = ↭-trans
  }

↭-setoid : Setoid _ _
↭-setoid = record
  { isEquivalence = ↭-isEquivalence
  }

------------------------------------------------------------------------
-- A reasoning API to chain permutation proofs and allow "zooming in"
-- to localised reasoning.

module PermutationReasoning where

  private module Base = EqReasoning ↭-setoid

  open Base public
    hiding (step-≈; step-≈˘; step-≈-⟩; step-≈-⟨)
    renaming (≈-go to ↭-go)

  open ↭-syntax _IsRelatedTo_ _IsRelatedTo_ ↭-go ↭-sym public

  -- Some extra combinators that allow us to skip certain elements

  infixr 2 step-swap step-prep

  -- Skip reasoning on the first element
  step-prep :  x xs {ys zs : List A}  (x  ys) IsRelatedTo zs 
              xs  ys  (x  xs) IsRelatedTo zs
  step-prep x xs rel xs↭ys = relTo (trans (prep x xs↭ys) (begin rel))

  -- Skip reasoning about the first two elements
  step-swap :  x y xs {ys zs : List A}  (y  x  ys) IsRelatedTo zs 
              xs  ys  (x  y  xs) IsRelatedTo zs
  step-swap x y xs rel xs↭ys = relTo (trans (swap x y xs↭ys) (begin rel))

  syntax step-prep x xs y↭z x↭y = x  xs <⟨ x↭y  y↭z
  syntax step-swap x y xs y↭z x↭y = x  y  xs <<⟨ x↭y  y↭z