Source code on Github
{-# OPTIONS --cubical-compatible --safe #-}
module Relation.Nullary.Recomputable where
open import Agda.Builtin.Equality using (_≡_; refl)
open import Data.Empty using (⊥)
open import Data.Product.Base using (_×_; _,_; proj₁; proj₂)
open import Level using (Level)
open import Relation.Nullary.Negation.Core using (¬_)
private
variable
a b : Level
A : Set a
B : Set b
Recomputable : (A : Set a) → Set a
Recomputable A = .A → A
recompute-constant : (r : Recomputable A) (p q : A) → r p ≡ r q
recompute-constant r p q = refl
⊥-recompute : Recomputable ⊥
⊥-recompute ()
_×-recompute_ : Recomputable A → Recomputable B → Recomputable (A × B)
(rA ×-recompute rB) p = rA (p .proj₁) , rB (p .proj₂)
_→-recompute_ : (A : Set a) → Recomputable B → Recomputable (A → B)
(A →-recompute rB) f a = rB (f a)
Π-recompute : (B : A → Set b) → (∀ x → Recomputable (B x)) → Recomputable (∀ x → B x)
Π-recompute B rB f a = rB a (f a)
∀-recompute : (B : A → Set b) → (∀ {x} → Recomputable (B x)) → Recomputable (∀ {x} → B x)
∀-recompute B rB f = rB f
¬-recompute : Recomputable (¬ A)
¬-recompute {A = A} = A →-recompute ⊥-recompute