Source code on Github
------------------------------------------------------------------------
-- The Agda standard library
--
-- Boring lemmas used in Data.Nat.GCD and Data.Nat.Coprimality
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.Nat.GCD.Lemmas where

open import Data.Nat.Base
open import Data.Nat.Properties
open import Function.Base using (_$_)
open import Relation.Binary.PropositionalEquality.Core
  using (_≡_; refl; cong; cong₂; sym)
open import Relation.Binary.PropositionalEquality.Properties
  using (module ≡-Reasoning)

open ≡-Reasoning

private
  comm-factor :  x k n  x * k + x * n  x * (n + k)
  comm-factor x k n = begin
    x * k + x * n ≡⟨ +-comm (x * k) _ 
    x * n + x * k ≡⟨ *-distribˡ-+ x n k 
    x * (n + k)   

  distrib-comm₂ :  d x k n  d + x * (n + k)  d + x * k + x * n
  distrib-comm₂ d x k n = begin
    d + x * (n + k)     ≡⟨ cong (d +_) (comm-factor x k n) 
    d + (x * k + x * n) ≡⟨ +-assoc d _ _ 
    d + x * k + x * n   

-- Other properties
-- TODO: Can this proof be simplified? An automatic solver which can
-- handle ∸ would be nice...
lem₀ :  i j m n  i * m  j * m + n  (i  j) * m  n
lem₀ i j m n eq = begin
  (i  j) * m            ≡⟨ *-distribʳ-∸ m i j 
  (i * m)  (j * m)      ≡⟨ cong (_∸ j * m) eq 
  (j * m + n)  (j * m)  ≡⟨ cong (_∸ j * m) (+-comm (j * m) n) 
  (n + j * m)  (j * m)  ≡⟨ m+n∸n≡m n (j * m) 
  n                      

lem₁ :  i j  2 + i ≤′ 2 + j + i
lem₁ i j = ≤⇒≤′ $ s≤s $ s≤s $ m≤n+m i j

private
  times2 :  x  x + x  2 * x
  times2 x = cong (x +_) (sym (+-identityʳ x))

  times2′ :  x y  x * y + x * y  2 * x * y
  times2′ x y = begin
    x * y + x * y ≡⟨ times2 (x * y) 
    2 * (x * y)   ≡⟨ *-assoc 2 x y 
    2 * x * y     

lem₂ :  d x {k n} 
       d + x * k  x * n  d + x * (n + k)  2 * x * n
lem₂ d x {k} {n} eq = begin
  d + x * (n + k)    ≡⟨ distrib-comm₂ d x k n 
  d + x * k + x * n  ≡⟨ cong (_+ x * n) eq 
  x * n + x * n      ≡⟨ times2′ x n 
  2 * x * n          

private
  distrib₃ :  a b c x  (a + b + c) * x  a * x + b * x + c * x
  distrib₃ a b c x = begin
    (a + b + c) * x       ≡⟨ *-distribʳ-+ x (a + b) c 
    (a + b) * x + c * x   ≡⟨ cong (_+ c * x) (*-distribʳ-+ x a b) 
    a * x + b * x + c * x 

  lem₃₁ :  a b c  a + (b + c)  b + a + c
  lem₃₁ a b c = begin
    a + (b + c) ≡⟨ +-assoc a b c 
    (a + b) + c ≡⟨ cong (_+ c) (+-comm a b) 
    b + a + c   

  +-assoc-comm :  a b c d  a + (b + c + d)  (a + c) + (b + d)
  +-assoc-comm a b c d = begin
    a + (b + c + d)   ≡⟨ cong (a +_) (cong (_+ d) (+-comm b c)) 
    a + (c + b + d)   ≡⟨ cong (a +_) (+-assoc c b d) 
    a + (c + (b + d)) ≡⟨ +-assoc a c _ 
    (a + c) + (b + d) 

  *-on-right :  a b c {d}  b * c  d  a * b * c  a * d
  *-on-right a b c {d} eq = begin
    a * b * c   ≡⟨ *-assoc a b c 
    a * (b * c) ≡⟨ cong (a *_) eq 
    a * d       

  *-on-left :  a b c {d}  a * b  d  a * (b * c)  d * c
  *-on-left a b c {d} eq = begin
    a * (b * c) ≡⟨ *-assoc a b c 
    a * b * c   ≡⟨ cong (_* c) eq 
    d * c       

  +-on-right :  a b c {d}  b + c  d  a + b + c  a + d
  +-on-right a b c {d} eq = begin
    a + b + c   ≡⟨ +-assoc a b c 
    a + (b + c) ≡⟨ cong (a +_) eq 
    a + d       

  +-on-left :  a b c d  a + b  d  a + (b + c)  d + c
  +-on-left a b c d eq = begin
    a + (b + c) ≡⟨ +-assoc a b c 
    a + b + c   ≡⟨ cong (_+ c) eq 
    d + c       

  +-focus-mid :  a b c d  a + b + c + d  a + (b + c) + d
  +-focus-mid a b c d = begin
    a + b + c + d     ≡⟨ cong (_+ d) (+-assoc a b c) 
    a + (b + c) + d   

  +-assoc-comm′ :  a b c d  a + b + c + d  a + (b + d) + c
  +-assoc-comm′ a b c d = begin
    a + b + c + d     ≡⟨ +-on-left a (b + c) d (a + b + c) (sym $ +-assoc a b c) 
    a + (b + c + d)   ≡⟨ cong (a +_) (+-on-right b c d (+-comm c d)) 
    a + (b + (d + c)) ≡⟨ cong (a +_) (+-assoc b d c) 
    a + (b + d + c)   ≡⟨ +-assoc a _ c 
    a + (b + d) + c   

  lem₃₂ :  a b c n  a * n + (b * n + a * n + c * n)  (a + a + (b + c)) * n
  lem₃₂ a b c n = begin
    a * n + (b * n + a * n + c * n) ≡⟨ cong (a * n +_) (distrib₃ b a c n) 
    a * n + (b + a + c) * n         ≡⟨ *-distribʳ-+ n a _ 
    (a + (b + a + c)) * n           ≡⟨ cong (_* n) (+-assoc-comm a b a c) 
    (a + a + (b + c)) * n           

  mid-to-right :  a b c  a + 2 * b + c  (a + b + c) + b
  mid-to-right a b c = begin
    a + 2 * b + c   ≡⟨ cong  x  a + x + c) (times2 b) 
    a + (b + b) + c ≡⟨ +-assoc-comm′ a b c b 
    a + b + c + b   

  mid-to-left :  a b c  a + 2 * b + c  b + (a + b + c)
  mid-to-left a b c = begin
    a + 2 * b + c   ≡⟨ cong  x  a + x + c) (times2 b) 
    a + (b + b) + c ≡⟨ cong (_+ c) (+-on-left a b b _ (+-comm a b)) 
    b + a + b + c   ≡⟨ +-on-left b (a + b) c (b + a + b) (sym $ +-assoc b a b) 
    b + (a + b + c) 

lem₃ :  d x {i k n} 
       d + (1 + x + i) * k  x * n 
       d + (1 + x + i) * (n + k)  (1 + 2 * x + i) * n
lem₃ d x {i} {k} {n} eq = begin
  d + y * (n + k)                     ≡⟨ distrib-comm₂ d y k n 
  d + y * k + y * n                   ≡⟨ cong (_+ y * n) eq 
  x * n + y * n                       ≡⟨ cong (x * n +_) (distrib₃ 1 x i n) 
  x * n + (1 * n + x * n + i * n)     ≡⟨ lem₃₂ x 1 i n  
  (x + x + (1 + i)) * n               ≡⟨ cong (_* n) (cong (_+ (1 + i)) (times2 x)) 
  (2 * x + (1 + i)) * n               ≡⟨ cong (_* n) (lem₃₁ (2 * x) 1 i) 
  (1 + 2 * x + i) * n                 
  where y = 1 + x + i

lem₄ :  d y {k i} n 
       d + y * k  (1 + y + i) * n 
       d + y * (n + k)  (1 + 2 * y + i) * n
lem₄ d y {k} {i} n eq = begin
  d + y * (n + k)          ≡⟨ distrib-comm₂ d y k n 
  d + y * k + y * n        ≡⟨ cong (_+ y * n) eq 
  (1 + y + i) * n + y * n  ≡⟨ *-distribʳ-+ n (1 + y + i) y 
  (1 + y + i + y) * n      ≡⟨ cong (_* n) (mid-to-right 1 y i) 
  (1 + 2 * y + i) * n      

lem₅ :  d x {n k} 
       d + x * n  x * k 
       d + 2 * x * n  x * (n + k)
lem₅ d x {n} {k} eq = begin
  d + 2 * x * n       ≡⟨ cong (d +_) (times2′ x n) 
  d + (x * n + x * n) ≡⟨ +-assoc d (x * n) _ 
  d + x * n + x * n   ≡⟨ cong (_+ x * n) eq 
  x * k + x * n       ≡⟨ comm-factor x k n 
  x * (n + k)         

lem₆ :  d x {n i k} 
       d + x * n  (1 + x + i) * k 
       d + (1 + 2 * x + i) * n  (1 + x + i) * (n + k)
lem₆ d x {n} {i} {k} eq = begin
  d + (1 + 2 * x + i) * n  ≡⟨ cong  z  d + z * n) (mid-to-left 1 x i) 
  d + (x + y) * n          ≡⟨ cong (d +_) (*-distribʳ-+ n x y) 
  d + (x * n + y * n)      ≡⟨ +-on-left d _ _ _ eq 
  y * k + y * n            ≡⟨ comm-factor y k n 
  y * (n + k)              
  where y = 1 + x + i

lem₇ :  d y {i} n {k} 
       d + (1 + y + i) * n  y * k 
       d + (1 + 2 * y + i) * n  y * (n + k)
lem₇ d y {i} n {k} eq = begin
  d + (1 + 2 * y + i) * n       ≡⟨ cong  z  d + z * n) (mid-to-right 1 y i) 
  d + (1 + y + i + y) * n       ≡⟨ cong (d +_) (*-distribʳ-+ n (1 + y + i) y) 
  d + ((1 + y + i) * n + y * n) ≡⟨ +-on-left d _ _ _ eq 
  y * k + y * n                 ≡⟨ comm-factor y k n 
  y * (n + k)                   

lem₈ :  {i j k q} x y 
       1 + y * j  x * i  j * k  q * i 
       k  (x * k  y * q) * i
lem₈ {i} {j} {k} {q} x y eq eq′ =
  sym (lem₀ (x * k) (y * q) i k lemma)
  where
  lemma = begin
    x * k * i        ≡⟨ *-on-right x k i (*-comm k i) 
    x * (i * k)      ≡⟨ *-on-left x i k (sym eq) 
    (1 + y * j) * k  ≡⟨ +-comm k _ 
    (y * j) * k + k  ≡⟨ cong (_+ k) (*-assoc y j k) 
    y * (j * k) + k  ≡⟨ cong  n  y * n + k) eq′ 
    y * (q * i) + k  ≡⟨ cong (_+ k) (*-assoc y q i)  
    y *  q * i  + k  

lem₉ :  {i j k q} x y 
       1 + x * i  y * j  j * k  q * i 
       k  (y * q  x * k) * i
lem₉ {i} {j} {k} {q} x y eq eq′ =
  sym (lem₀ (y * q) (x * k) i k lemma)
  where
  lem :  a b c  a * b * c  b * c * a
  lem a b c = begin
    a * b * c   ≡⟨ *-assoc a b c 
    a * (b * c) ≡⟨ *-comm a _ 
    b * c * a   
  lemma = begin
    y * q * i        ≡⟨ lem y q i 
    q * i * y        ≡⟨ cong  n  n * y) eq′ 
    j * k * y        ≡⟨ lem y j k 
    y * j * k        ≡⟨ cong  n  n * k) eq 
    (1 + x * i) * k  ≡⟨ +-comm k _ 
    x * i * k + k    ≡⟨ cong (_+ k) (*-on-right x i k (*-comm i k)) 
    x * (k * i) + k  ≡⟨ cong (_+ k) (*-assoc x k i) 
    x * k * i + k    

lem₁₀ :  {a′} b c {d} e f  let a = suc a′ in
        a + b * (c * d * a)  e * (f * d * a) 
        d  1
lem₁₀ {a′} b c {d} e f eq =
  m*n≡1⇒n≡1 (e * f  b * c) d
    (lem₀ (e * f) (b * c) d 1
       (*-cancelʳ-≡ (e * f * d) (b * c * d + 1) _ (begin
          e * f * d * a           ≡⟨ *-assoc₄₃ e f d a 
          e * (f * d * a)         ≡⟨ eq 
          a + b * (c * d * a)     ≡⟨ cong (a +_) (*-assoc₄₃ b c d a) 
          a + b * c * d * a       ≡⟨ +-comm a _ 
          b * c * d * a + a       ≡⟨ cong (b * c * d * a +_) (+-identityʳ a) 
          b * c * d * a + (a + 0) ≡⟨ *-distribʳ-+ a (b * c * d) 1 
          (b * c * d + 1) * a     )))
  where a = suc a′
        *-assoc₄₃ :  w x y z  w * x * y * z  w * (x * y * z)
        *-assoc₄₃ w x y z = begin
          w * x * y * z   ≡⟨ cong (_* z) (*-assoc w x y) 
          w * (x * y) * z ≡⟨ *-assoc w _ z 
          w * (x * y * z) 

lem₁₁ :  {i j m n k d} x y 
       1 + y * j  x * i  i * k  m * d  j * k  n * d 
       k  (x * m  y * n) * d
lem₁₁ {i} {j} {m} {n} {k} {d} x y eq eq₁ eq₂ =
  sym (lem₀ (x * m) (y * n) d k (begin
    x * m * d        ≡⟨ *-on-right x m d (sym eq₁) 
    x * (i * k)      ≡⟨ *-on-left x i k (sym eq) 
    (1 + y * j) * k  ≡⟨ +-comm k _ 
    y * j * k + k    ≡⟨ cong (_+ k) (*-assoc y j k) 
    y * (j * k) + k  ≡⟨ cong  p  y * p + k) eq₂ 
    y * (n * d) + k  ≡⟨ cong (_+ k) (*-assoc y n d) 
    y * n * d + k    ))