Source code on Github
------------------------------------------------------------------------
-- The Agda standard library
--
-- Pointwise lifting of relations to lists
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.List.Relation.Binary.Pointwise.Base where

open import Data.Product.Base as Product using (_×_; _,_; <_,_>; ∃-syntax)
open import Data.List.Base using (List; []; _∷_)
open import Level using (Level; _⊔_)
open import Relation.Binary.Core using (REL; _⇒_)
open import Relation.Binary.Construct.Composition using (_;_)

private
  variable
    a b c  : Level
    A B : Set a
    x y : A
    xs ys : List A
    R S : REL A B 

------------------------------------------------------------------------
-- Definition
------------------------------------------------------------------------

infixr 5 _∷_

data Pointwise {A : Set a} {B : Set b} (R : REL A B )
               : List A  List B  Set (a  b  ) where
  []  : Pointwise R [] []
  _∷_ : (x∼y : R x y) (xs∼ys : Pointwise R xs ys) 
        Pointwise R (x  xs) (y  ys)

------------------------------------------------------------------------
-- Operations
------------------------------------------------------------------------

head : Pointwise R (x  xs) (y  ys)  R x y
head (x∼y  xs∼ys) = x∼y

tail : Pointwise R (x  xs) (y  ys)  Pointwise R xs ys
tail (x∼y  xs∼ys) = xs∼ys

uncons : Pointwise R (x  xs) (y  ys)  R x y × Pointwise R xs ys
uncons = < head , tail >

rec :  (P :  {xs ys}  Pointwise R xs ys  Set c) 
      (∀ {x y xs ys} {Rxsys : Pointwise R xs ys} 
        (Rxy : R x y)  P Rxsys  P (Rxy  Rxsys)) 
      P [] 
       {xs ys} (Rxsys : Pointwise R xs ys)  P Rxsys
rec P c n []            = n
rec P c n (Rxy  Rxsys) = c Rxy (rec P c n Rxsys)

map : R  S  Pointwise R  Pointwise S
map R⇒S []            = []
map R⇒S (Rxy  Rxsys) = R⇒S Rxy  map R⇒S Rxsys

unzip : Pointwise (R ; S)  (Pointwise R ; Pointwise S)
unzip [] = [] , [] , []
unzip ((y , r , s)  xs∼ys) =
  Product.map (y ∷_) (Product.map (r ∷_) (s ∷_)) (unzip xs∼ys)