Source code on Github
------------------------------------------------------------------------
-- The Agda standard library
--
-- Greatest Common Divisor for integers
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.Integer.GCD where

open import Data.Integer.Base
open import Data.Integer.Divisibility
open import Data.Integer.Properties
import Data.Nat.GCD as 
open import Data.Product.Base using (_,_)
open import Relation.Binary.PropositionalEquality.Core using (_≡_; cong)

open import Algebra.Definitions {A = } _≡_ as Algebra
  using (Associative; Commutative; LeftIdentity; RightIdentity; LeftZero; RightZero; Zero)

------------------------------------------------------------------------
-- Definition
------------------------------------------------------------------------

gcd :     
gcd i j = + ℕ.gcd  i   j 

------------------------------------------------------------------------
-- Properties
------------------------------------------------------------------------

gcd[i,j]∣i :  i j  gcd i j  i
gcd[i,j]∣i i j = ℕ.gcd[m,n]∣m  i   j 

gcd[i,j]∣j :  i j  gcd i j  j
gcd[i,j]∣j i j = ℕ.gcd[m,n]∣n  i   j 

gcd-greatest :  {i j c}  c  i  c  j  c  gcd i j
gcd-greatest c∣i c∣j = ℕ.gcd-greatest c∣i c∣j

gcd[0,0]≡0 : gcd 0ℤ 0ℤ  0ℤ
gcd[0,0]≡0 = cong (+_) ℕ.gcd[0,0]≡0

gcd[i,j]≡0⇒i≡0 :  i j  gcd i j  0ℤ  i  0ℤ
gcd[i,j]≡0⇒i≡0 i j eq = ∣i∣≡0⇒i≡0 (ℕ.gcd[m,n]≡0⇒m≡0 (+-injective eq))

gcd[i,j]≡0⇒j≡0 :  {i j}  gcd i j  0ℤ  j  0ℤ
gcd[i,j]≡0⇒j≡0 {i} eq = ∣i∣≡0⇒i≡0 (ℕ.gcd[m,n]≡0⇒n≡0  i  (+-injective eq))

gcd-comm : Commutative gcd
gcd-comm i j = cong (+_) (ℕ.gcd-comm  i   j )

gcd-assoc : Associative gcd
gcd-assoc i j k = cong (+_) (ℕ.gcd-assoc  i   j  ( k ))

gcd-zeroˡ : LeftZero 1ℤ gcd
gcd-zeroˡ i = cong (+_) (ℕ.gcd-zeroˡ  i )

gcd-zeroʳ : RightZero 1ℤ gcd
gcd-zeroʳ i = cong (+_) (ℕ.gcd-zeroʳ  i )

gcd-zero : Zero 1ℤ gcd
gcd-zero = gcd-zeroˡ , gcd-zeroʳ