Source code on Github
{-# OPTIONS --cubical-compatible --safe #-}
module Data.Char.Base where
open import Level using (zero)
import Data.Nat.Base as ℕ
open import Data.Bool.Base using (Bool)
open import Function.Base using (_on_)
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.PropositionalEquality.Core
open import Relation.Binary.Construct.Closure.Reflexive
open import Agda.Builtin.Char public using ( Char )
renaming
( primIsLower to isLower
; primIsDigit to isDigit
; primIsAlpha to isAlpha
; primIsSpace to isSpace
; primIsAscii to isAscii
; primIsLatin1 to isLatin1
; primIsPrint to isPrint
; primIsHexDigit to isHexDigit
; primToUpper to toUpper
; primToLower to toLower
; primCharToNat to toℕ
; primNatToChar to fromℕ
)
open import Agda.Builtin.String public using ()
renaming ( primShowChar to show )
infix 4 _≈_ _≉_
_≈_ : Rel Char zero
_≈_ = _≡_ on toℕ
_≉_ : Rel Char zero
_≉_ = _≢_ on toℕ
infix 4 _≈ᵇ_
_≈ᵇ_ : (c d : Char) → Bool
c ≈ᵇ d = toℕ c ℕ.≡ᵇ toℕ d
infix 4 _<_
_<_ : Rel Char zero
_<_ = ℕ._<_ on toℕ
infix 4 _≤_
_≤_ : Rel Char zero
_≤_ = ReflClosure _<_