Source code on Github{-# OPTIONS --cubical-compatible #-}
module Class.Functor.Instances where
open import Class.Prelude
open import Class.Functor.Core
instance
Functor-Maybe : Functor Maybe
Functor-Maybe = record {M}
where import Data.Maybe as M renaming (map to _<$>_)
FunctorLaws-Maybe : FunctorLaws Maybe
FunctorLaws-Maybe = λ where
.fmap-id → λ where (just _) → refl; nothing → refl
.fmap-∘ → λ where (just _) → refl; nothing → refl
Functor-List : Functor List
Functor-List ._<$>_ = map
FunctorLaws-List : FunctorLaws List
FunctorLaws-List = record {fmap-id = p; fmap-∘ = q}
where
p : ∀ {A : Type ℓ} (x : List A) → fmap id x ≡ x
p = λ where
[] → refl
(x ∷ xs) → cong (x ∷_) (p xs)
q : ∀ {A : Type ℓ} {B : Type ℓ′} {C : Type ℓ″} {f : B → C} {g : A → B} (x : List A) →
fmap (f ∘ g) x ≡ (fmap f ∘ fmap g) x
q {f = f}{g} = λ where
[] → refl
(x ∷ xs) → cong (f (g x) ∷_) (q xs)
Functor-List⁺ : Functor List⁺
Functor-List⁺ = record {L}
where import Data.List.NonEmpty as L renaming (map to _<$>_)
Functor-Vec : ∀ {n} → Functor (flip Vec n)
Functor-Vec = record {V}
where import Data.Vec as V renaming (map to _<$>_)
Functor-TC : Functor TC
Functor-TC = record {R}
where import Reflection.TCM.Syntax as R
Functor-Abs : Functor Abs
Functor-Abs = record {R}
where import Reflection.AST.Abstraction as R renaming (map to _<$>_)
Functor-Arg : Functor Arg
Functor-Arg = record {R}
where import Reflection.AST.Argument as R renaming (map to _<$>_)
Functor-∃Vec : Functor (∃ ∘ Vec)
Functor-∃Vec ._<$>_ f (_ , xs) = -, (f <$> xs)