Source code on Github{-# OPTIONS --cubical-compatible #-}
module Class.Bifunctor where
open import Class.Prelude hiding (A; B; C)
open import Class.Core
import Data.Product as ×
import Data.Sum as ⊎
private variable
a b : Level
A : Type a; A′ : Type a; A″ : Type a
B : A → Type b; B′ : A → Type b; C : A′ → Type b
record BifunctorI
(F : (A : Type a) (B : A → Type b) → Type (a ⊔ b)) : Type (lsuc (a ⊔ b)) where
field
bimap′ : (f : A → A′) → (∀ {x} → B x → C (f x)) → F A B → F A′ C
map₁′ : (A → A′) → F A (const A″) → F A′ (const A″)
map₁′ f = bimap′ f id
_<$>₁′_ = map₁′
map₂′ : (∀ {x} → B x → B′ x) → F A B → F A B′
map₂′ g = bimap′ id g
_<$>₂′_ = map₂′
infixl 4 _<$>₁′_ _<$>₂′_
open BifunctorI ⦃...⦄ public
instance
Bifunctor-Σ : BifunctorI {a}{b} Σ
Bifunctor-Σ .bimap′ = ×.map
record Bifunctor (F : Type a → Type b → Type (a ⊔ b)) : Type (lsuc (a ⊔ b)) where
field
bimap : ∀ {A A′ : Type a} {B B′ : Type b} → (A → A′) → (B → B′) → F A B → F A′ B′
map₁ : ∀ {A A′ : Type a} {B : Type b} → (A → A′) → F A B → F A′ B
map₁ f = bimap f id
_<$>₁_ = map₁
map₂ : ∀ {A : Type a} {B B′ : Type b} → (B → B′) → F A B → F A B′
map₂ g = bimap id g
_<$>₂_ = map₂
infixl 4 _<$>₁_ _<$>₂_
open Bifunctor ⦃...⦄ public
map₁₂ : ∀ {F : Type a → Type a → Type a} {A B : Type a}
→ ⦃ Bifunctor F ⦄
→ (A → B) → F A A → F B B
map₁₂ f = bimap f f
_<$>₁₂_ = map₁₂
infixl 4 _<$>₁₂_
instance
Bifunctor-× : Bifunctor {a}{b} _×_
Bifunctor-× .bimap f g = ×.map f g
Bifunctor-⊎ : Bifunctor {a}{b} _⊎_
Bifunctor-⊎ .bimap = ⊎.map