Source code on Github
{-# OPTIONS --cubical-compatible #-}
module Class.Bifunctor where

open import Class.Prelude hiding (A; B; C)
open import Class.Core
import Data.Product as ×
import Data.Sum     as 

private variable
  a b : Level
  A : Type a; A′ : Type a; A″ : Type a
  B : A  Type b; B′ : A  Type b; C : A′  Type b

-- ** indexed/dependent version
record BifunctorI
  (F : (A : Type a) (B : A  Type b)  Type (a  b)) : Type (lsuc (a  b)) where
  field
    bimap′ : (f : A  A′)  (∀ {x}  B x  C (f x))  F A B  F A′ C

  map₁′ : (A  A′)  F A (const A″)  F A′ (const A″)
  map₁′ f = bimap′ f id
  _<$>₁′_ = map₁′

  map₂′ : (∀ {x}  B x  B′ x)  F A B  F A B′
  map₂′ g = bimap′ id g
  _<$>₂′_ = map₂′

  infixl 4 _<$>₁′_ _<$>₂′_

open BifunctorI ⦃...⦄ public

instance
  Bifunctor-Σ : BifunctorI {a}{b} Σ
  Bifunctor-Σ .bimap′ = ×.map

-- ** non-dependent version
record Bifunctor (F : Type a  Type b  Type (a  b)) : Type (lsuc (a  b)) where
  field
    bimap :  {A A′ : Type a} {B B′ : Type b}  (A  A′)  (B  B′)  F A B  F A′ B′

  map₁ :  {A A′ : Type a} {B : Type b}  (A  A′)  F A B  F A′ B
  map₁ f = bimap f id
  _<$>₁_ = map₁

  map₂ :  {A : Type a} {B B′ : Type b}  (B  B′)  F A B  F A B′
  map₂ g = bimap id g
  _<$>₂_ = map₂

  infixl 4 _<$>₁_ _<$>₂_

open Bifunctor ⦃...⦄ public

map₁₂ :  {F : Type a  Type a  Type a} {A B : Type a}
    Bifunctor F 
   (A  B)  F A A  F B B
map₁₂ f = bimap f f
_<$>₁₂_ = map₁₂
infixl 4 _<$>₁₂_

instance
  Bifunctor-× : Bifunctor {a}{b} _×_
  Bifunctor-× .bimap f g = ×.map f g

  Bifunctor-⊎ : Bifunctor {a}{b} _⊎_
  Bifunctor-⊎ .bimap = ⊎.map