{-# OPTIONS --cubical-compatible --safe #-}
module Relation.Binary.Construct.Composition where
open import Data.Product.Base using (∃; _×_; _,_)
open import Function.Base
open import Level
open import Relation.Binary.Core using (Rel; REL; _⇒_)
open import Relation.Binary.Structures using (IsPreorder)
open import Relation.Binary.Definitions
using (_Respects_; _Respectsʳ_; _Respectsˡ_; _Respects₂_; Reflexive; Transitive)
private
variable
a b c ℓ ℓ₁ ℓ₂ : Level
A : Set a
B : Set b
C : Set c
infixr 9 _;_
_;_ : {A : Set a} {B : Set b} {C : Set c} →
REL A B ℓ₁ → REL B C ℓ₂ → REL A C (b ⊔ ℓ₁ ⊔ ℓ₂)
L ; R = λ i j → ∃ λ k → L i k × R k j
module _ (L : Rel A ℓ₁) (R : Rel A ℓ₂) where
reflexive : Reflexive L → Reflexive R → Reflexive (L ; R)
reflexive L-refl R-refl = _ , L-refl , R-refl
respects : ∀ {p} {P : A → Set p} →
P Respects L → P Respects R → P Respects (L ; R)
respects resp-L resp-R (k , Lik , Rkj) = resp-R Rkj ∘ resp-L Lik
module _ {≈ : Rel A ℓ} (L : REL A B ℓ₁) (R : REL B C ℓ₂) where
respectsˡ : L Respectsˡ ≈ → (L ; R) Respectsˡ ≈
respectsˡ Lˡ i≈i′ (k , Lik , Rkj) = k , Lˡ i≈i′ Lik , Rkj
module _ {≈ : Rel C ℓ} (L : REL A B ℓ₁) (R : REL B C ℓ₂) where
respectsʳ : R Respectsʳ ≈ → (L ; R) Respectsʳ ≈
respectsʳ Rʳ j≈j′ (k , Lik , Rkj) = k , Lik , Rʳ j≈j′ Rkj
module _ {≈ : Rel A ℓ} (L : REL A B ℓ₁) (R : REL B A ℓ₂) where
respects₂ : L Respectsˡ ≈ → R Respectsʳ ≈ → (L ; R) Respects₂ ≈
respects₂ Lˡ Rʳ = respectsʳ L R Rʳ , respectsˡ L R Lˡ
module _ {≈ : REL A B ℓ} (L : REL A B ℓ₁) (R : Rel B ℓ₂) where
impliesˡ : Reflexive R → (≈ ⇒ L) → (≈ ⇒ L ; R)
impliesˡ R-refl ≈⇒L {i} {j} i≈j = j , ≈⇒L i≈j , R-refl
module _ {≈ : REL A B ℓ} (L : Rel A ℓ₁) (R : REL A B ℓ₂) where
impliesʳ : Reflexive L → (≈ ⇒ R) → (≈ ⇒ L ; R)
impliesʳ L-refl ≈⇒R {i} {j} i≈j = i , L-refl , ≈⇒R i≈j
module _ (L : Rel A ℓ₁) (R : Rel A ℓ₂) (comm : R ; L ⇒ L ; R) where
transitive : Transitive L → Transitive R → Transitive (L ; R)
transitive L-trans R-trans {i} {j} {k} (x , Lix , Rxj) (y , Ljy , Ryk) =
let z , Lxz , Rzy = comm (j , Rxj , Ljy) in z , L-trans Lix Lxz , R-trans Rzy Ryk
isPreorder : {≈ : Rel A ℓ} → IsPreorder ≈ L → IsPreorder ≈ R → IsPreorder ≈ (L ; R)
isPreorder Oˡ Oʳ = record
{ isEquivalence = Oˡ.isEquivalence
; reflexive = impliesˡ L R Oʳ.refl Oˡ.reflexive
; trans = transitive Oˡ.trans Oʳ.trans
}
where module Oˡ = IsPreorder Oˡ; module Oʳ = IsPreorder Oʳ
transitive⇒≈;≈⊆≈ : (≈ : Rel A ℓ) → Transitive ≈ → (≈ ; ≈) ⇒ ≈
transitive⇒≈;≈⊆≈ _ trans (_ , l , r) = trans l r