{-# OPTIONS --without-K --safe #-}
open import Categories.Category.Core using (Category)
module Categories.Functor.Construction.FromDiscrete {o β e} (π : Category o β e) where
open import Relation.Binary.PropositionalEquality.Core as β‘
open import Categories.Category.Construction.StrictDiscrete using (Discrete)
open import Categories.Functor.Core using (Functor)
open Category π
open Equiv
FromDiscrete : β {o} {A : Set o} β (A β Obj) β Functor (Discrete A) π
FromDiscrete {o} {A = A} select = record
{ Fβ = select
; Fβ = Ξ» { β‘.refl β id }
; identity = Equiv.refl
; homomorphism = Ξ» { {_} {_} {_} {β‘.refl} {β‘.refl} β Equiv.sym identityΒ² }
; F-resp-β = Ξ» { β‘.refl β Equiv.refl }
}