{-# OPTIONS --cubical-compatible --safe #-}
open import Algebra.Lattice.Bundles
open import Algebra.Construct.NaturalChoice.Base
open import Relation.Binary.Bundles using (TotalPreorder)
module Algebra.Lattice.Construct.NaturalChoice.MinMaxOp
{a ℓ₁ ℓ₂} {O : TotalPreorder a ℓ₁ ℓ₂}
(minOp : MinOperator O)
(maxOp : MaxOperator O)
where
open TotalPreorder O
open MinOperator minOp
open MaxOperator maxOp
open import Algebra.Lattice.Structures _≈_
open import Algebra.Construct.NaturalChoice.MinMaxOp minOp maxOp
open import Relation.Binary.Reasoning.Preorder preorder
open import Algebra.Lattice.Construct.NaturalChoice.MinOp minOp public
open import Algebra.Lattice.Construct.NaturalChoice.MaxOp maxOp public
⊔-⊓-isLattice : IsLattice _⊔_ _⊓_
⊔-⊓-isLattice = record
{ isEquivalence = isEquivalence
; ∨-comm = ⊔-comm
; ∨-assoc = ⊔-assoc
; ∨-cong = ⊔-cong
; ∧-comm = ⊓-comm
; ∧-assoc = ⊓-assoc
; ∧-cong = ⊓-cong
; absorptive = ⊔-⊓-absorptive
}
⊓-⊔-isLattice : IsLattice _⊓_ _⊔_
⊓-⊔-isLattice = record
{ isEquivalence = isEquivalence
; ∨-comm = ⊓-comm
; ∨-assoc = ⊓-assoc
; ∨-cong = ⊓-cong
; ∧-comm = ⊔-comm
; ∧-assoc = ⊔-assoc
; ∧-cong = ⊔-cong
; absorptive = ⊓-⊔-absorptive
}
⊓-⊔-isDistributiveLattice : IsDistributiveLattice _⊓_ _⊔_
⊓-⊔-isDistributiveLattice = record
{ isLattice = ⊓-⊔-isLattice
; ∨-distrib-∧ = ⊓-distrib-⊔
; ∧-distrib-∨ = ⊔-distrib-⊓
}
⊔-⊓-isDistributiveLattice : IsDistributiveLattice _⊔_ _⊓_
⊔-⊓-isDistributiveLattice = record
{ isLattice = ⊔-⊓-isLattice
; ∨-distrib-∧ = ⊔-distrib-⊓
; ∧-distrib-∨ = ⊓-distrib-⊔
}
⊔-⊓-lattice : Lattice _ _
⊔-⊓-lattice = record
{ isLattice = ⊔-⊓-isLattice
}
⊓-⊔-lattice : Lattice _ _
⊓-⊔-lattice = record
{ isLattice = ⊓-⊔-isLattice
}
⊔-⊓-distributiveLattice : DistributiveLattice _ _
⊔-⊓-distributiveLattice = record
{ isDistributiveLattice = ⊔-⊓-isDistributiveLattice
}
⊓-⊔-distributiveLattice : DistributiveLattice _ _
⊓-⊔-distributiveLattice = record
{ isDistributiveLattice = ⊓-⊔-isDistributiveLattice
}